

Journal of Korean Society for Atmospheric Environment Vol. 34, No. 5, October 2018, pp. 659-667 https://doi.org/10.5572/KOSAE.2018.34.5.659 p-ISSN 1598-7132, e-ISSN 2383-5346

논 문

NaOH를 이용한 배기가스의 습식 스크러빙에서 SO₂ 농도에 따른 NO_x 제거효율

Effect of SO₂ Concentration on NO_x Removal Efficiency in NaOH-Based Wet Scrubbing

강명수, 황정호* 연세대학교 기계공학부

Myung Soo Kang, Jungho Hwang* Department of Mechanical Engineering, Yonsei University **접수일** 2018년 7월 18일 **수정일** 2018년 8월 23일 **채택일** 2018년 9월 21일

Received 18 July 2018 Revised 23 August 2018 Accepted 21 September 2018

*Corresponding author Tel : +82-(0)2-2123-7226 E-mail : hwangjh@yonsei.ac.kr

Abstract NO_x and SO_2 are mainly generated in the combustion of fossil fuels, and they cause secondary aerosol formation and acid rain in the atmosphere. Many studies have been conducted on the wet scrubbing process which can simultaneously reduce NO_x and SO_2 at relatively low temperature. In this study, we conducted an experimental study on wet scrubbing by using NaOH solution. Especially, this study focuses on NO_x and SO_2 removal characteristics by varying NO_2/NO_x ratio and SO_2 concentration.

Key words: Wet scrubbing, NaOH, NO_x, SO₂

1. 서 론

NO_x와 SO₂는 화력발전소 등에서 화석연료 연소 시에 주로 발생하며 대기 중에서 질산염, 황산염 등 을 생성하여 이차 유기 에어로졸(Secondary Organic Aerosol)의 원인이 되고 있다(Choi *et al.*, 2017). 이에 따라 발전 설비에서의 NO_x 및 SO₂의 배출농도는 엄 격히 규제되고 있다. 국내의 경우 2018년 3월 2일부 터 시행된 대기환경보전법 시행규칙에 의해 2015년 이후 설치되는 설비용량 100 MW 이상의 발전시설에 대해 NO_x와 SO₂ 배출량을 모두 50 ppm 이하로 규제 하고 있으며 규제 수치가 점차 강화되는 추세이다. 기존의 NO_x 저감에는 선택적 촉매 환원법(Selective Catalytic Reduction, SCR)이 주로 활용되어 왔다. SCR의 경우 촉매반응을 일으키기 위해 200~300°C 의 고온을 필요로 하므로, 이를 위해 배출되는 연소 가스의 온도를 높게 유지하여야 한다.

습식 스크러빙은 연소가스에 수용액 상의 흡수제 를 뿌려 수용성 가스를 제거하는 $100 \sim 150^{\circ}$ C의 비교 적 저온에서 가동되는 공정을 의미한다 (Haiping *et al.*, 2014). 따라서 습식 스크러빙에서는 제거할 가스 가 물에 잘 용해되고, 수용액 상의 흡수제와 잘 반응 하는 것이 중요하다. SO₂의 경우 Henry's law constant 가 1.2 kmol/m³·atm (at 25°C)으로 높아 습식 스크러 빙에 유리하다. 반면에 발전소에서 배출되는 NO_x 중 의 90% 이상을 차지하는 NO는 Henry's law constant 가 1.9 × 10⁻³ kmol/m³·atm (at 25°C)으로 매우 낮아 습식 스크러빙으로 잘 제거되지 않는 특성이 있다. NO를 습식 스크러빙하기 위해서는 NO를 NO₂ 및 수 증기와 반응시켜 N₂O₃, HNO₂, N₂O₄ 등의 물과 잘 반 응하는 중간 생성물을 생성하여야 한다. 이 때문에 NO 전체 혹은 일부를 NO₂로 산화시키는 공정이 필 수적이다.

이를 위해 가스 상의 산화제인 O₃을 이용하여 스크 러버 전단에서 NO를 NO₂로 산화시키고 그 후단의 스크러버에서 최종적으로 NO_x를 저감하는 연구들이 진행된 바 있다 (Yamamoto *et al.*, 2016; Yoon *et al.*, 2016; Haiping *et al.*, 2014). Kang and Hwang (2016)은 유전체 장벽 방전 (Dielectric Barrier Discharge, DBD) 을 이용하여 O₃를 발생하여 NO를 산화시키고 NaOH 수용액을 분사하는 스크러버에서 NO_x를 제거하는 공정에 대한 연구를 수행하였다. O₃ 투입 농도를 변 화시켜 NO가 산화되는 정도를 조정하고, NO₂/NO_x 에 따른 NO_x 스크러빙 효율을 도출하였다. 연구 결과 NO₂/NO_x 비 0.1, 0.5, 1.0에 대하여 NO_x 저감효율은 각각 18%, 65%, 54%로 NO₂/NO_x가 0.5일 때 NO_x 저 감효율이 가장 높게 나타났다.

습식 스크러빙 설비가 설치되는 발전 설비에서는 SO,가 함께 발생한다. 연소가스 내 SO, 농도는 연료 내 황 함유량 및 운전 조건에 따라 변화하므로(Obras-Loscertales et al., 2014; Kazanc et al., 2011) SO, 농도 가 NO, 저감에 미치는 영향도 본 공정에서 고려해야 할 중요한 요소이다. Zheng et al. (2014)은 limestone slurry를 이용한 NO,, SO, 저감에 대한 연구를 수행 하였다. Zheng et al. (2014)에서는 연소가스 내 SO2 함 유량에 따른 NO, 저감효율에 대해 도출하였으며 SO, 농도가 증가할 때 NO 저감효율은 큰 차이가 없었지 만 NO2 저감효율은 증가하는 경향을 보였다. Zhao et al. (2015)은 sodium humate (HA-Na) 수용액을 이용 한 NO_x, SO₂ 저감에 대한 연구를 수행하였다. Zhao et al. (2015)에서는 SO2 농도가 증가함에 따라 NO, NO2 저감효율이 모두 증가하는 경향을 보였다. Hao et al. (2017)은 H,O,를 이용한 NO 산화와 Na,SO,를 이용 한 NO_x와 SO₂ 동시저감에 대한 연구를 수행하였다. Hao et al. (2017)에서는 SO₂ 농도가 증가함에 따라 NO, NO, 저감효율이 모두 증가하는 경향을 보였다. Zheng et al. (2014), Zhao et al. (2015), Hao et al. (2017)에서는 SO₂ 농도 증가에 따른 NO_x 저감효율 증가를 수용액 내에 존재하는 SO₃²⁻ 이온에 의한 효과 인 것으로 설명하고 있다.

본 연구에서도 NaOH 수용액을 이용한 NO_x, SO₂ 습식 스크러빙 공정에 대한 실험적 기초 연구를 수행 하였으며, 특히 SO₂ 농도에 따른 NO_x 저감효율에 대 해 중점적으로 고찰하였다.

2. 실 험

본 연구에서 사용한 실험 장치 구성은 그림 1과 같 다. 실험장치는 크게 가스 공급부, 습식 스크러버, 가 스 분석 시스템으로 구성되어 있다. NO, NO₂, SO₂, N₂를 실험에 사용하였다. 각각 가스의 유량은 MFC (Mass Flow Controller)를 이용하여 제어하였으며, 이 를 통해 혼합가스의 농도를 조절하였다. 혼합가스 농 도는 석탄 화력 발전설비에서 일반적으로 발생하는 NO_x, SO₂ 농도를 기준으로 NO_x (NO+NO₂) 300 ppm, SO₂ 0~1000 ppm으로 설정하였다 (Nyashina *et al.*, 2018). 혼합 가스의 온도 및 압력은 상온, 상압으로 (25°C, 1 atm) 설정하였다. 가스 공급부 후단에 습식 스크러버를 설치하고 스크러버 후단에 가스 분석기 (Testo 350K, NO/NO₂/SO₂ analyzer)를 설치하였다.

Fig. 1. Experimental setup.

본 연구에서 구성한 습식 스크러버는 충전층 (Packed-bed) 타입 스크러버이다. 스크러버의 직경은 60 mm로 하고 내부에 400 mm 높이로 라시히 링 (Raschig Ring, Pyrex Glass, 9×9mm) 충전층을 배치 하였다. 스크러버 상단에서 NaOH 수용액을 분사하 여 흡수 용액이 충전층을 따라 흘러내리도록 하였다. 스크러버 상단에서 새 흡수 용액을 지속적으로 공급 하고 사용된 흡수 용액은 스크러버 아래쪽으로 배출 되도록 하였다. NaOH 수용액의 농도는 선행 논문 (Sun et al., 2017) 및 기초 실험을 통해 용액 농도에 따라 NO, 스크러빙 효율이 더 이상 증가하지 않는 0.1 M으로 설정하였다. 혼합 가스가 스크러버 하단에 서 투입되어 NaOH 수용액이 흐르는 충전층을 통과 하여 스크러버 상단의 출구로 빠져나가도록 하였다. 이 때 스크러버를 통과하는 가스와 흡수 용액의 비 (Liquid/gas ratio)는 선행 논문들과 유사한 0.01으로 설정하였다(Pillai et al., 2009; Chien and Chu, 2000). 이를 위해 혼합가스의 유량은 3 L/min, 흡수 용액의 유량은 30 mL/min으로 설정하였다. 각각의 가스 저 감효율은 스크러버 통과 전과 후의 가스 농도를 측정 하여 계산하며 계산 방법은 식(1)과 같이 정의하였 다. n은 스크러버에서의 가스 제거 효율, C,는 스크러 버 입구에서의 가스 농도, C,는 스크러버 출구에서의 가스 농도이다.

$$\eta (\%) = \left(1 - \frac{C_f}{C_i}\right) \times 100\% \tag{1}$$

3. **화학 반응**

습식 스크러버에서의 NO_x 제거에 관해 식(2)~ (11)의 반응식이 알려져 있다(Thomas and Vanderschuren, 2000). 가스 상에서 NO와 NO₂는 식(2)와 (3)의 반응을 통해 N₂O₃와 N₂O₄를 각각 생성한다. 그리고 수증기가 존재하는 조건 하에서 식(4)에 의 해 가스 상태의 HNO₂를 생성한다. 식(2)~(4)의 평 형상수 K₂~K₄이다. 아래에서 T의 단위는 절대온도 (K)이다.

$$NO(g) + NO_2(g) \leftrightarrow N_2O_3(g)$$

 $K_2 = 4.12 \times 10^{-13} \exp(4869/T)$ (2)

$$2NO_2(g) \leftrightarrow N_2O_4(g)$$

 $K_3 = 6.98 \times 10^{-15} \exp(6866/T)$ (3)

$$NO(g) + NO_2(g) + H_2O(g) \leftrightarrow 2HNO_2(g)$$

$$K_4 = 1.825 \times 10^{-12} \exp(4723/T)$$
(4)

N₂O₃, HNO₂, NO₂, N₂O₄ 가스는 고체-액체 경계면 을 통해 수용액 상으로 흡수되고 식(5)~(8)에 의해 물과 반응하여 수용액 상태의 HNO₂와 HNO₃를 생성 한다.

$$N_2O_3(g) + H_2O(l) \to 2HNO_2(aq) \tag{5}$$

$$HNO_2(g) + H_2O(l) \rightarrow HNO_2(aq) + H_2O(l)$$
(6)

 $2NO_2(g) + H_2O(l) \rightarrow HNO_2(aq) + HNO_3(aq)$ (7)

 $N_2O_4(g) + H_2O(l) \rightarrow HNO_2(aq) + HNO_3(aq)$ (8)

HNO₃은 수용액 상에서 안정한 반면에 HNO₂는 수 용액 상에서 불안정하여 식(9)의 반응을 통해 NO와 HNO₃로 분해된다.

$$3HNO_2(aq) \rightarrow 2NO(g) + HNO_3(aq) + H_2O(l)$$
(9)

하지만 수용액 내에 NaOH 가 존재할 경우 식(10) 의 중화반응에 의해 HNO₂가 수용액에 흡수 즉시 제 거되어 식(9)의 HNO₂ 분해에 의한 NO 방출 반응이 억제된다. HNO₃ 또한 식(11)의 중화반응에 의해 NaOH와 반응하여 제거된다. 이를 통해 NO_x 제거반 응의 최종 생성물로 NaNO₂(aq), NaNO₃(aq)의 염이 생성된다.

 $HNO_2(aq) + NaOH(aq) \rightarrow NaNO_2(aq) + H_2O(l)$ (10)

 $HNO_3(aq) + NaOH(aq) \rightarrow NaNO_3(aq) + H_2O(l)$ (11)

습식 스크러버에서의 SO₂ 제거는 식(12), (13)의 반 응에 의해 일어난다(Yamamoto *et al.*, 2017).

661

$$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$$
 (12)

 $H_2SO_3(aq) + 2NaOH(aq) \rightarrow Na_2SO_3(aq) + 2H_2O(l)$ (13)

이 때 식(13)에 의해 생성되는 Na₂SO₃은 식(14)의 반응을 통해 NO₂를 제거하는 특성이 있다(Yamamoto *et al.*, 2017).

$$2NO_{2}(g) + Na_{2}SO_{3}(aq) + H_{2}O(l) \rightarrow$$

$$2NaNO_{2}(aq) + H_{2}SO_{4}(aq)$$
(14)

4. 실험결과 및 고찰

4.1 가스 조성에 따른 NO_x, SO₂ 저감효율

그림 2는 NO₂/NO_x 비에 따른 출구 NO, NO₂ 농도 및 NO_x 저감효율을 나타낸다. NO₂/NO_x 비가 0으로 NO_x가 모두 NO로만 구성되어 있을 때는 NO_x 저감 효율이 6% 정도로 낮게 나타난다. 그러나 NO₂ 함량 을 높여 NO₂/NO_x가 증가할수록 NO_x 저감효율도 증 가하여 NO₂/NO_x가 0.6일 때 NO_x 저감효율이 59.5% 로 최대가 된다. 이 이후부터는 NO₂/NO_x가 증가할수 록 NO_x 저감효율이 감소하여 NO₂/NO_x가 1으로 NO_x 가 모두 NO₂로만 구성되어 있을 경우 NO_x 저감효율 이 53%로 감소하였다.

Thomas et al. (2000)의 NaOH 수용액을 이용한 NO_x 저감 연구에서도 본 연구와 유사한 경향의 NO₂/ NO_x에 따른 NO_x 저감효율을 보고하고 있으며 그 이 유를 아래와 같이 설명하고 있다. NO₂/NO_x가 0.6 부 근에서는 NO와 NO₂가 비슷한 양으로 함께 존재하 므로 식(2), (4)에 의해 가스상에 N₂O₃, HNO₂가 존재 하고, 식(5), (6), (10)에 의해 N₂O₃, HNO₂가 주용액 상으로 흡수되어 제거된다. 이 때문에 가스 상과 수 용액 상의 화학 반응이 일어나지 않는 NO만 존재할 때에 비해 NO_x 저감효율이 증가한다. NO₂/NO_x가 1 부근에서는 NO에 비해 NO₂가 과량으로 존재하는 상태이므로 식(3)의 반응이 주로 일어나 가스 상에 N₂O₃ 보다는 NO₂와 N₂O₄의 비율이 높다. 이 때 NO₂ 와 N₂O₄는 식(7), (8), (10), (11)에 의해 최종적으로 제

Fig. 2. NO₂ removal efficiency at various NO₂/NO₂.

Fig. 3. NO, removal efficiency at various $\rm NO_2/\rm NO_x$ and $\rm SO_2$ concentrations.

거된다. 이 때 Thomas *et al.* (2000)에서 제시된 가스 와 NaOH 수용액 간의 반응 속도 상수인 OKP (Overall Kinetic Parameter)를 각각의 가스별로 비교하면 $OKP_{NO_2} = 15.37 \times 10^{-7} kmol/(m^2 skPa^{1.5}), OKP_{N_2O_4} =$ $14.22 \times 10^{-4} kmol/(m^2 skPa), OKP_{(N_2O_3 + HNO_2)} =$ 2.316×10^{-3} 으로 $OKP_{(N_2O_3 + HNO_2)}$ 가 OKP_{NO_2} 및 $OKP_{N_2O_4}$ 보다 크게 나타난다. 이 때문에 가스 상에서 N₂O₃와 HNO₂가 주로 존재하는 NO₂/NO_x = 0.6 부근에서 NO₂와 N₂O₄가 주로 존재하는 NO₂/NO_x = 1 부근보다 가스와 NaOH 수용액 간의 반응이 빠르게 일어나 NaOH를 이용한 배기가스의 습식 스크러빙에서 SO₂ 농도에 따른 NO₄ 제거효율

Fig. 4. Removed NO, NO₂ and NO_x concentrations.

므로 NO_x 저감효율이 높게 나타나는 것으로 판단 된다.

그림 3은 SO, 농도에 따른 NO, 및 SO, 저감효율 특 성을 나타낸다. SO,는 스크러버 입구농도가 500 ppm, 1000 ppm일 때 모두 100%의 저감효율을 나타냈다. SO2는 25°C에서 Henry's law constant가 1.2 kmol/ m³·atm으로 NO (1.9×10⁻³ kmol/m³·atm) 및 NO₂ (1.2×10⁻² kmol/m³·atm)에 비해 큰 차이로 높기 때 문에 반응(12),(13)이 빠르게 일어나 비교적 저감효 율이 높은 것으로 판단된다. Yoon et al. (2016)의 선행 연구에서도 SO,의 스크러빙 효율은 100%에 근접하 는 값으로 나타났다. 또한 그림 3에서 SO₂ 농도가 0 ppm, 500 ppm, 1000 ppm으로 증가할수록 최대 NO_x 저감효율이 점차 증가하는 경향을 나타내었다. 그리 고 SO₂ 농도가 0 ppm, 500 ppm, 1000 ppm으로 증가함 에 따라 최대 NO, 저감효율이 나타나는 NO,/NO,가 0.6, 0.7, 0.8으로 증가하고 이 때의 NO, 저감효율은 각각 59.5%, 66.4%, 71.8%로 나타났다.

SO₂ 농도가 NO_x 저감효율에 미치는 영향에 대한 정량적 분석을 위해 각 조건별로 NO와 NO₂ 제거량 을 그림 4(a)와 (b)에 나타내었다. SO₂ 농도가 증가함 에 따라 그림 4(a),(b)와 같이 NO 제거량은 소폭 낮 아지고 NO₂의 제거량은 대폭 증가하였다. 이것은 SO₂가 NO 제거는 억제하고, NO₂ 제거는 촉진시키는 효과가 있다는 것을 의미한다. 이는 식(14)의 Na₂SO₃ 에 의한 NO₂ 저감으로 설명할 수 있다. SO₂ 농도가 높아질수록 식(12), (13)의 SO, 저감 반응에 의해 Na,SO,가 많이 생성된다. Na,SO,는 식(14)에 의해 NO,를 제거하는 특성이 있는 것으로 알려져 있다. 이 때문에 연소가스 내에 SO,가 존재할 시에는 NaOH 수용액에 의한 NO, 제거반응 외에 Na, SO, 에 의한 NO2 제거반응이 추가적으로 일어난다. 따라서 그림 4(b)와 같이 SO₂ 농도가 높아질수록 더 많은 양의 NO,가 제거되는 현상이 나타난다. NO의 경우 식(2), (4)와 같이 습식 스크러버에서 제거되기 위해서는 NO,와 반응하여야 한다. 이 때 혼합가스에 포함된 SO, 농도가 증가할수록 위에서 설명한대로 NO, 제거 량이 늘어난다. 이 때문에 혼합가스 내에 SO,가 존재 할 경우 NO 제거반응에 필요한 NO,가 식(14)에 의 해 제거되어 NO 제거반응이 억제된다. NO와 NO, 제거량의 합인 NO, 제거량을 그림 4(c)에 나타내었 다. NO,/NO, 값이 높을수록 SO,에 의한 NO, 저감 촉 진 효과가 NO 저감 억제 효과보다 크게 나타나므로 SO, 농도가 증가할수록 NO, 저감량이 최대가 되는 NO,/NO,가 높아지고 이 때의 총 NO, 저감량 또한 높 아지게 된다.

그림 5는 SO₂ 농도에 따른 NO, NO₂ 저감효율을 나 타낸다. NO 저감효율은 SO₂ 농도 상승에 관계없이 거의 일정한 값을 나타내었다. 반면 NO₂ 저감효율은 SO₂ 농도 증가에 따라 50.5%에서 70%까지 최대 20% 상승하였다. 이를 통해 그림 3에서 SO₂ 농도가 증가 할수록 나타나는 현상들의 근거로 제시된 Na₂SO₃에

663

Fig. 5. NO, NO₂ removal efficiency at various SO₂ concentrations.

의한 NO₂가 제거반응을 확인할 수 있다.

실제 화력 발전소의 연소가스는 NO_x, SO₂ 이외에 도 CO₂ 및 O₂를 다량 포함한다. 이 때문에 여러 선행 논문들에서 CO₂ 및 O₂ 농도에 따른 NO_x, SO₂ 스크러 빙 효율에 대해 고찰한 바 있다(Zhao *et al.*, 2016, 2014). Zhao *et al.* (2014)의 연구에서는 혼합가스 내 의 O₂, CO₂ 농도가 각각 0~8%, 0~12%로 증가하더 라도 NO_x 및 SO₂ 저감효율에 큰 변화가 없는 것으로 나타났다. 같은 저자의 또 다른 연구 (Zhao *et al.*, 2016)에서도 유사한 결과가 확인된다. 선행 연구에서 는 이를 O₂ 및 CO₂가 NO_x, SO₂에 비해 화학적으로 비 활성하기 때문인 것으로 설명하고 있다.

4.2 용액 사용시간에 따른 NO_x, SO₂ 저감효율

흡수 용액을 순환하여 장시간 사용할 경우 시간이 지날수록 흡수 용액의 pH가 감소하여 NO_x, SO₂ 저감 효율이 떨어지게 된다. 이 때문에 시간에 따른 흡수 용액의 pH 변화 및 이 때의 NO_x, SO₂ 저감효율 변화 를 고려할 필요가 있다. 이를 위해 그림 6과 같은 장 치를 구성하여 한정된 양의 흡수 용액을 순환하며 시 간에 따른 흡수 용액의 pH 및 NO_x, SO₂ 저감효율을 도출하였다. 스크러빙 효율 및 pH 변화가 충분히 나

Fig. 6. Experimental setup.

타나기 위해 필요한 실험 소요시간을 고려하여 스크 러버를 순환하는 흡수 용액의 양은 100 mL로 설정하 였다.

그림 7은 시간에 따른 흡수 용액의 pH 및 NO₂, SO₂ 저감효율을 나타낸 것이다. NO2/NO2는 0.6으로 설정 하고 SO, 농도가 0, 500, 1000 ppm일 때의 3가지 경우 에 대하여 실험을 수행하였다. 모든 Case에서 시간이 경과할수록 흡수 용액의 pH는 감소하였고, pH가 급 격히 감소하는 지점에서 NO, 저감효율이 급격히 감 소하였다. SO2의 경우 pH가 급격히 감소한 이후에도 일정 시간 높은 저감효율을 유지하다가 점차 효율이 감소하는 경향을 보였다. NO, 저감에 의해 생성되는 HNO,는 수용액 내에 중화반응을 일으킬 OH- 이온 이 없을 경우 식(9)에 의해 분해되어 NO를 생성한 다. 이 때문에 NO, 저감효율의 경우 상대적으로 pH 에 민감한 경향을 보이는 것으로 보인다. 반면에 SO2 의 경우 Henry's law constant가 1.2 kmol/m³·atm (at 25°C)으로 매우 높으므로 중성의 수용액에도 포화될 때까지 잘 녹는 특성을 가져 pH에 덜 민감한 것으로 판단된다. 수용액이 중성이 되는 지점(pH=7)까지의 경과 시간은 SO, 농도가 1000, 500, 0 ppm일 때 각각 실험 시작 후 36분, 68분, 504분으로 나타났다.

실험 결과에 대한 정확한 검증을 위하여 화학양론 적 분석을 수행하였다. 시간에 따른 NO_x, SO₂ 저감효 율을 이용하여 1분 당 소모되는 OH⁻ 이온의 몰 수를

Fig. 7. NO_x , SO_2 removal efficiency and pH of absorbent solution by elapsed time. (NO_x concentration = 300 ppm, $NO_2/NO_x = 0.6$)

식(15),(16)과 같이 계산할 수 있다. $OH^{-}consumption_{SO_{s}}\left(\frac{mol_{OH^{-}}}{\min}\right) = \frac{3L_{gas}}{\min} \times \frac{C_{SO_{s}}ppm}{10^{6}} \times \eta_{SO_{s}}$ $\times \frac{1mol}{22.4L} \times \frac{2mol_{OH^{-}}}{1mol_{SO_{s}}}$ (15)

$$OH^{-}consumption_{NO_{x}}\left(\frac{mol_{OH^{-}}}{\min}\right) = \frac{3L_{gas}}{\min} \times \frac{C_{NO_{x}}ppm}{10^{6}} \times \eta_{NO_{x}}$$

$$\times \frac{1mol}{22.4L} \times \frac{1mol_{OH^-}}{1mol_{NO_v}}$$
(16)

실험 초기의 흡수 용액(0.1M NaOH, 100 mL)에 포 함된 OH⁻ 이온 몰수가 0.01 mol인 것을 이용하여 용 액 내의 OH⁻ 이온이 모두 소모되는 지점을 계산할 수 있다. 이를 통해 계산된 흡수 용액의 중화점 (pH=7)에 해당하는 시간은 SO, 농도가 1000, 500, 0 ppm일 때 각각 35분, 64분, 463분으로 나타나 대체로 실험으로 도출된 시간과 유사한 값을 나타내었다. 이 때의 SO,와 NO, 각각의 OH- 이온 소모량은 표 1과 같이 계산되었다. SO₂ 농도가 500 ppm인 경우 SO₂가 NO, 보다 5.12배 더 많은 OH⁻ 이온을 소모하고, SO, 농도가 1000 ppm인 경우 SO,가 NO, 보다 9.26배 더 많은 OH⁻이온을 소모하는 것으로 나타났다. 이를 통 해 NO,에 의한 수용액 내의 OH⁻ 이온 소모량은 상대 적으로 미미하고 주로 SO,에 수용액 내의 OH- 이온 이 소모되고 있는 것을 알 수 있다. 이는 실험에 사용 된 SO₂ 가스 농도(500, 1000 ppm)가 NO_x 농도(300 ppm)에 비해 상대적으로 높고 100%의 저감효율을

Table 1. OH^{-} consumption by $NO_{x'} SO_{2}$ removal.

SO ₂ content	OH ⁻ consumption by SO₂	OH ⁻ consumption by NO _x	Total OH ⁻ consumption
0 ppm	0	0.00999 mol	0.00999 mol
500 ppm	0.00839 mol	0.00164 mol	0.01003 mol
1000 ppm	0.00907 mol	0.00098 mol	0.01005 mol

가지며, SO₂의 흡수에 의해 생성되는 SO₃²⁻는 2가 이 온으로 SO₂ 1볼 당 OH⁻ 이온을 2볼씩 소모하기 때문 인 것으로 판단된다.

5. 결 론

본 논문에서는 NaOH 수용액을 이용한 NO_x, SO₂ 습식 스크러빙에 대한 실험적 연구를 수행하였다. 특 히 NO₂/NO_x에 따른 NO_x 저감효율과 SO₂ 농도에 따 른 NO_x 저감효율 특성에 대한 실험을 수행하여 다음 과 같은 결론을 도출하였다.

① NO_x 스크러빙 시에 NO₂/NO_x = 0.6에서 NO_x 저 감효율이 59.5%로 최대값을 나타냈으며 이는 NO와 NO₂가 비슷한 양으로 존재할 때 생성되는 N₂O₃와 HNO₂가 NO₂/NO_x = 1 부근에서 생성되는 NO₂ 및 N₂O₄에 비해 NaOH에 흡수되는 속도가 매우 빠르기 때문에 나타나는 현상으로 판단된다.

② SO₂ 스크러빙 시에는 모든 조건에서 SO₂ 저감효
 율이 100%로 나타났다. SO,는 Henry's law constant

J. Korean Soc. Atmos. Environ., Vol. 34, No. 5, October 2018, pp. 659-667

가 1.2 kmol/m³·atm (at 25°C)으로 NO (1.9×10⁻³ kmol/m³·atm (at 25°C)) 및 NO₂(1.2×10⁻² kmol/m³·atm (at 25°C))에 비해 매우 높기 때문에 반응 (12), (13)이 활발하게 일어나 저감효율이 높은 것으 로 판단된다.

③ SO₂ 농도가 0 ppm, 500 ppm, 1000 ppm으로 증가 할수록 최대 NO_x 저감효율이 점차 증가하고, 최대 NO_x 저감효율이 나타나는 NO₂/NO_x가 0.6, 0.7, 0.8으 로 증가하는 현상을 보였다. 이는 Na₂SO₃에 의한 NO₂ 저감으로 설명할 수 있다. SO₂ 농도가 높아질수 록 수용액 내에 생성되는 Na₂SO₃의 농도가 높아지고 이에 의해 NO₂를 많이 포함하는 NO₂/NO_x 값이 높은 영역에서 NO_x 저감효율이 더 크게 증가하기 때문인 것으로 판단된다.

④ NaOH 수용액을 이용한 습식 스크러빙에서 SO₂ 가 NO_x 스크러빙 효율을 향상시키는 효과가 있음을 확인하였고, 그 원인은 Na₂SO₃에 의한 NO₂ 저감 반 응이 NaOH에 의한 NO_x 저감반응 외에 추가로 일어 나기 때문인 것으로 판단된다.

⑤ 흡수 용액 사용 시간에 따른 용액의 pH 변화 및 이때의 NO_x, SO₂ 저감효율을 도출하였다. 흡수 용액 사용시간이 경과할수록 용액의 pH는 감소하였고 이 에 따라 NO_x 저감효율 및 SO₂ 저감효율이 감소하였 다. SO₂ 저감은 NO_x 저감보다 상대적으로 pH에 둔감 한 것으로 나타났다. 이는 SO₂의 경우 Henry's law constant가 1.2 kmol/m³·atm (at 25°C)으로 매우 높기 때문에 중성의 수용액에도 포화될 때까지 잘 녹는 특 성을 가져 pH에 덜 민감한 것으로 판단된다.

⑥ 흡수 용액 사용 시간에 따른 NO_x, SO₂ 저감효율 및 pH 변화에 대해 화학양론적 분석을 수행하였다. 실험에서 도출한 수용액의 pH가 7이 되는 시간이 NO_x, SO₂ 저감효율을 이용해 계산한 값과 대체로 유 사하게 나타났다.

감사의 글

본 연구는 산업통상자원부(MOTIE)와 한국에너지

기술평가원(KETEP)의 지원을 받아 수행한 연구 과 제입니다(No. 20153010102030).

References

- Chien, T., Chu, H. (2000) Removal of SO₂ and NO from flue gas by wet scrubbing using an aqueous NaClO₂ solution, Journal of Hazardous Materials, 80(1-3), 43-57.
- Choi, J., Choi, Y., Ahn, J., Park, J., Oh, J., Lee, G., Park, T., Park, G., Jeffery, S.O., Lee, T. (2017) Observation of secondary organic aerosol and new particle formation at a remote site in baengnyeong Island, Korea, Asian Journal of Atmospheric Environment, 11(4), 300-312.
- Haiping, X., Lin, D., Gaoyan, H., Xiang, N. (2014) Influence of Gas-Gas Heater on wet flue gas desulfuration, Advanced Materials Research, 92-96.
- Hao, R., Yang, S., Zhao, Y., Zhang, Y., Yuan, B., Mao, X. (2017) Follow-up research of ultraviolet catalyzing vaporized H₂O₂ for simultaneous removal of SO₂ and NO : Absorption of NO₂ and NO by Na-based WFGD byproduct (Na₂SO₃), Fuel Processing Technology, 160, 64-69.
- Kang, M.S., Hwang, J. (2016) NO_x removal with dielectric barrier discharge and wet absorption, 15th High Pressure Low Temperature Plasma Chemistry Symposium, Czech Republic, Sept 11-16.
- Kazanc, F., Khatami, R., Crnkovic, P.M., Levendis, Y.A. (2011) Emission of NO_x and SO₂ from coals of various ranks, bagasse, and coal-bagasse blends burning in O_2/N_2 and O_2/CO_2 environments, Energy Fuels, 25(7), 2850-2861.
- Nyashina, G.S., Vershinina, K.Y., Dmitrienko, M.A., Strizhak, P.A. (2018) Environmental benefits and drawbacks of composite fuels based on industrial wastes and different ranks of coal, Journal of Hazardous Materials, 347, 359-370.
- Obras-Loscertales, M., Diego, L.F., Garcia-Labiano, F., Rufas, A., Abad, A., Gayan, P., Adanez, J. (2014) Sulfur retention in an oxy-fuel bubbling fluidized bed combustor: effect of coal rank, type of sorbent and O₂/CO₂ ratio, Fuel, 137, 384-392.
- Pillai, K.C., Chung, S.J., Raju, T., Moon, I. (2009) Experimental aspects of combined NOx and SO₂ removal from flue-gas mixture in an integrated wet scrubberelectrochemical cell system, Chemosphere, 76(5),

657-664.

- Sun, B., Sheng, M., Gao, W., Zhang, L., Arowo, M., Liang, Y., Shao, L., Chu, G., Zou, H., Chen, J. (2017) Absorption of nitrogen oxides into sodium hydroxide solution in a rotating packed bed with preoxidation by ozone, Energy Fuels, 31(10), 11019-11025.
- Thomas, D., Vanderschuren, J. (2000) Nitrogen oxides scrubbing with Alkaline Solutions, Chemical Engineering Technology, 23(5), 449-455.
- Yamamoto, Y., Ymamoto, H., Takada, D., Kuroki, T., Fujishima, H., Okubo, M. (2016) Simultaneous removal of NO_x and SO_x from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process, Ozone: Science Engineering, 38(3), 211-218.
- Yamamoto, H., Kuroki, T., Fujishima, H., Yamamoto, Y., Yoshida, K., Okubo, M. (2017) Pilot-scale exhaust gas treatment for a glass manufacturing system using a plasma combined semi-dry chemical process, IEEE Transactions on Industry Applications, 53(2), 1416-1423.
- Yoon, H.J., Park, H., Park, D. (2016) Simultaneous oxidation and absorption of NO_x and SO₂ in an integrated O₃ oxidation/wet atomizing system, Energy Fuels, 30(4), 3289-3297.

- Zhao, Y., Hao, R., Zhang, P., Zhou, S. (2014) Integrative Process for simultaneous removal of SO₂ and NO utilizing a vaporized H₂O₂/Na₂S₂O₈, Energy Fuels, 28(10), 6502-6510.
- Zhao, Y., Hao, R., Wang, T., Yang, C. (2015) Follow-up research for integrative process of pre-oxidation and postabsorption cleaning flue gas: Absorption of NO₂, NO and SO₂, Chemical Engineering Journal, 273, 55-65.
- Zhao, Y., Hao, R., Yuan, B., Jiang, J. (2016) Simultanoues removal of SO₂, NO and Hg⁰ through an integrative process utilizing a cost-effective complex oxidant, Journal of Hazardous Materials, 301, 74-83.
- Zheng, C., Xu, C., Zhang, Y., Zhang, J., Gao, X., Luo, Z., Cen, K. (2014) Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system, Applied Energy, 129, 187-194.

Authors Information

강명수(연세대학교 기계공학부 박사과정) 황정호(연세대학교 기계공학부 교수)