

Journal of Korean Society for Atmospheric Environment Vol. 34, No. 6, December 2018, pp. 759-771 https://doi.org/10.5572/KOSAE.2018.34.6.759 p-ISSN 1598-7132, e-ISSN 2383-5346

논 문

Ce 첨가에 따른 W/TiO₂ 촉매의 NH₃-SCR 반응특성 연구 A Study on NH₃-SCR Reaction Characteristics of W/TiO₂ Catalyst with Ce Addition

김민수, 이승현¹⁾, 홍성창^{2),*}

경기대학교 일반대학원 환경에너지공학과, ¹⁾(주)테크원 ²⁾경기대학교 환경에너지공학과

Min Su Kim, Seung Hyun Lee¹⁾, Sung Chang Hong^{2),*}

Department of Environmental Energy Engineering, Graduate School of Kyonggi University ¹⁾Techwin

²⁾Department of Environmental Energy Engineering, Kyonggi University

접수일 2018년 9월 20일 수정일 2018년 10월 18일 채택일 2018년 11월 8일

Received 20 September 2018 Revised 18 October 2018 Accepted 8 November 2018

*Corresponding author Tel : +82-(0)31-249-9744 E-mail : schong@kyonggi.ac.kr

Abstract In this study, NH₃-SCR experiment using W/Ce/TiO₂ was performed. The reaction activity of W/TiO₂ decreased sharply at the temperature below 450°C. In order to overcome this problem, it was confirmed that the reaction activity was enhanced by addition of Cerium. It was confirmed that the reaction activity varies depending on the added position and amount of Cerium. In the temperature range of 350~550°C, the catalytic activity of W [13]/Ce [10]/TiO₂(A) catalyst supported on Tunsten in Ce [10]/TiO₂(A) was found to be about 20% higher than that of Ce [10]/W [13]/TiO₂(A) supported on Cerium in W [13]/TiO₂(A). When H₂-TPR and Raman analysis were performed, W [13]/Ce [10]/TiO₂(A) could not identify crystalline CeO₂ and Bulk CeO₂ by forming W-O-Ce bond. On the other hand, it was confirmed that Ce [10]/ W [13]/TiO₂(A) formed Crystalline CeO2 and Bulk CeO2. When the reaction activity was compared by varying the Cerium content, W [13]/Ce [4]/TiO2(A) with 4 wt.% Cerium content showed excellent activity over 82% in temperature range of 350~550°C. when W [13]/Ce [4]/TiO₂ catalysts were prepared using commercially TiO₂ with various physicochemical properties and the correlation between the reaction activity and the physicochemical properties were compared, it was confirmed that the larger the BET and the smaller the average pore diameter, the better the reaction activity. Finally, a comparison of the reaction activity in various operating conditions (Space velocity: 60,000~180,000h⁻¹, Oxygen concentration: 3~15%, NH₃/NO_x ratio: 0.6~1.2) and the thermal durability of the W [13]/Ce [4]/TiO₂(A) catalyst were carried out. When W [13]/Ce [10]/TiO₂(A) catalyst was heat treated at 550°C for 600 hours, it was judged to have thermal durability because it maintained the initial reaction activity.

Key words: NO_X, NH₃, SCR, Tunsten, Cerium

1. 서 론

산업의 발달과 지속적인 경제성장으로 인해 인구 및 교통량이 급격하게 증가하였고, 이로 인해 온실가 스로 인한 온난화 현상과 산성비와 오존층 감소 등의 환경오염이 증가되어 전 세계적으로 심각한 사회문 제로 떠오르고 있다. 또한 대기오염의 양상은 급격한 경제 성장으로 나타나는 미세먼지 (NO_x, SO_x 화합 물), 오존, smog 및 유해대기오염물질 발생 등의 형태 로 나타나고 있어 체감오염도는 점차 악화되고 있다. 그 중 질소산화물(NO_x)의 경우 발전소, 보일러 및 각 종 연소기 등에서 연료의 연소에 의해 배출되며 이를 제거하기 위하여 많은 노력을 하고 있지만 배연가스 의 NO_x 제거 기술이 만족하지 못한 단계에 있는 실

정이다. 이러한 고정오염원의 NO_x 제어 방법으로는 연료 전처리에 의한 연소 전 탈질방법, 연소방법의 개량 및 연소장치의 개조에 의한 연소 중 탈질방법, 배연가스의 처리에 의한 연소 후 탈질방법의 세가지 로 나눌 수 있다. 이 중 배연탈질기술은 NO,을 대규 모로 처리가능하며 제거효율이 우수한 장점이 있어 현재까지 가장 상용화된 NO, 처리기술이다(Karami and Salehi, 2012; Copper and Alley, 1994; Busca et al 1985). 배연탈질기술 중 SCR (Selective Catalytic Reduction)은 가장 널리 사용하며, 개발 분야는 촉매 개발 및 반응기 개발 분야와 조업조건에 따른 공정 개발 등의 분야로 나눌 수 있고, 촉매 개발 부분의 경 우 SCR 기술의 핵심 분야이며, 촉매의 특성에 따라 운전온도 범위나 SCR 공정조건을 결정할 수 있으므 로 매우 중요한 핵심기술이라 할 수 있으며 운전온도 에 따른 촉매 적용 분야는 매우 중요하다(Jang et al., 2008; Armor, 1995; Nam, 1988). 이에 따라 몇 가지 공 정의 배가스 온도를 살펴보면, Habibullah et al. (2009)와 Joshua et al. (2008)는 바이오가스 열병합 발 전소에서 350~550°C, Joshua et al. (2008)와 Pritchard et al. (1995)는 보일러에서 380~450℃로써 중온영역 (350~400°C)부터 고온영역(450~550°C)까지 넓은 온도범위를 포함하고 있다. 하지만 상용촉매의 경우, 바나듐(Vanadium; V)계 촉매가 사용되고 있으며 300~400℃의 온도범위에서 90% 이상의 우수한 반응 활성을 가지나 450℃ 이상에서 환원제인 NH₃의 산 화로 인한 활성감소가 나타나며, 690℃ 이상의 온도 에서 활성금속인 V2O5의 휘발로 인한 촉매의 비활성 화(deactivation), 흡입 시 인체에 치명적인 독성물질 로 작용한다(Giakoumelou et al., 2006; Nova et al., 2001; Amiridis et al., 1999; Busca et al., 1999; Ramis et al., 1996). 또한 열적 충격에 의한 비활성화가 진행됨 으로 인하여 450°C 이상의 고온영역에서 바나듐계 촉매의 사용이 제한된다고 보고되고 있다(Nova et al., 2001; Busca et al., 1999; Ramis et al., 1996). 이러 한 바나듐계 상용촉매의 문제점을 해결하기 위해 많 은 연구자들에 의해서 비 바나듐계 촉매에 대한 연구 가 진행되고 있다. 고온에서의 NH, 산화를 억제하는 텅스텐(Tungsten; W)의 경우, 바나듐 대체 물질로 기 대되고 있다. 하지만 텅스텐 촉매는 450℃ 이상의 좁 은 온도범위에서 반응활성을 나타내는 문제점을 가 지기 때문에 반응활성을 나타낼 수 있는 온도범위가 넓은 중·고온에서의 반응활성이 우수한 촉매가 필 요한 실정이다(Lee et al., 2015; Zheng et al., 2005). 이 에 따라 중·고온에 적용하기 위한 SCR 촉매로서 텅 스텐과 산소저장능력 (Oxygen Storage Capacity; OSC)이 우수한 세륨(Cerium; Ce)을 함께 사용하는 촉매의 연구가 활발히 진행되고 있으며, Lee et al. (2012)는 WO₃/CeO₂-ZrO₂, Shan et al. (2012)와 Eibl et al. (2001) _℃ CeO₂-WO₃/TiO₂, Kwon et al. (2015) _℃ WO₃/CeO₂, Peng et al. (2012) ^o Ge(or Mn)/CeO₂-WO3 촉매들이 연구 되어져 왔다. Peng et al. (2012)은 CeO2에 WO3가 담지될 때 W-O-Ce의 형태로 결합함 을 확인하였으며, H2-TPR 분석을 통하여 WO3 담지 비율이 증가할 때 W-O-Ce 결합이 많이 형성되어 환 원 peak가 고온으로 이동하면서 더 낮은 환원능력을 가진다고 설명하고 있다. Shan et al. (2012)의 연구에 따르면, Ce-W-Ti 촉매의 경우, TiO2의 우수한 분산도 에 의하여 Ce와 W가 고분산되어 활성점이 증진되어 반응활성이 우수하였다고 하였다. 앞선 연구의 내용 들을 살펴보면, Ce 및 W 담지량에 따라 반응활성을 비교하고 W의 구조적 특성에 대한 연구 및 W, Ce 산 화가의 변화, 분산도 차이 등을 반응인자로서 초점이 맞추어 연구들이 진행되어왔다. 하지만 W/TiO2의 반 응활성 증진을 위한 조촉매로써 Ce 담지 시, 첨가위 치에 따라 촉매 반응활성을 비교하고 반응활성 차이 가 나는 인자에 대한 연구가 미미한 실정이다. 따라 서, 본 연구에서는 W/TiO2 촉매에 조촉매로써 Ce를 첨가하여 W/TiO2의 문제점인 고온영역의 좁은 운전 범위를 350~550℃의 중·고온영역으로 확장하는데 목적이 있으며, Ce 첨가위치를 달리하여 중·고온의 반응활성을 평가하는 연구를 수행하였으며 Ce 함량 을 달리하여 반응활성 비교를 하였다. 또한 반응활성 증진을 위하여 다양한 상용 TiO2를 이용한 반응활성 비교 평가 및 물리화학적 특성과의 상관관계를 알아 보았다. 마지막으로 다양한 조업조건(공간속도, 산소 농도, NH₃/NO_x ratio)에서의 반응활성 비교 평가, 장 시간 촉매에 열적 충격을 주어 촉매의 반응활성에 영 향을 주는지 확인하였다.

2. 연구 방법

2.1 촉매 제조 방법

본 연구에 사용된 촉매를 제조할 때 Sigma aldrich 사의 텅스텐 전구체(Ammonium metatungstate hydrate, ≥85% WO₃ basis; H₂₆N₆O₄₀W₁₂xH₂O) 및 세륨 전구체 (Cerium (III) nitrate hexahydrate, 99% trace metals basis; Ce(NO₃)₃ · 6H₂O)를 비표면적 및 결정 구조가 다른 여러 가지 형태의 상용 TiO2에 담지하여 제조하였다. 다양한 상용 TiO2의 경우, Millennium 사의 TiO₂(A)와 TiO₂(B), Ishihara사의 TiO₂(C)와 TiO₂(D), Sigma Aldrich 사의 TiO₂(E)와 TiO₂(G), Degussa 사의 TiO₂(F)를 사용하였다. 활성금속의 함 량은 []으로 나타내었으며 W[x]는 TiO₂의 무게를 기준으로 W을 x wt.%만큼 담지 하였음을 의미한다. 또한 촉매 제조에 있어 습윤 함침법(wet impregnation method)을 사용하였고 제조방법은 그림 1에 나 타내었다. 먼저 W/TiO2 촉매제조에 있어, 지지체인 TiO₂에 W을 13 wt.%만큼 첨가하여 슬러리(Slurry) 상태의 혼합용액을 만들어 1시간 이상 교반한 후 회 전진공증발기(Rotary Vacuum Evaporator)를 이용하 여 70℃에서 수분을 증발시킨다. 수분을 증발시키고 나서 시료의 추가건조를 위하여 건조오븐(Dry oven) 에서 103℃로 24시간 건조시킨 후 10℃/min의 승온 속도로 관형로(Tubular Furnace)에서 600℃에서 8시 간 동안 소성 (Calcination)하여 제조하였다. W/Ce/ TiO2 촉매제조의 경우, 지지체인 TiO2에 Ce를 4 wt.% 또는 10 wt.%를 첨가하여 교반, 건조 및 500°C에서 4 시간 소성하여 Ce/TiO2를 제조한 후, W을 13 wt.% 담 지하여 제조하였다. Ce/W/TiO₂ 촉매의 경우, 앞선 방 법과 동일하게 W/TiO₂를 제조한 후 Ce를 담지하여 제조하였다. W-Ce/TiO₂ 촉매의 경우 W과 Ce를 동시 에 TiO₂에 담지하여 600°C에서 8시간 소성하여 제조 하였다. 앞서 제조된 촉매들은 압축, 분쇄하여 건조시 켜서 40~50 mesh를 사용하여 체질하여 실험에 적합 한 입자를 얻었다.

761

2.2 실험장치 및 방법

본 연구에서 촉매의 NH3-SCR 실험에 사용한 고정 층 반응기의 모식도는 그림 2에 나타내었다. 실험장 치는 크게 반응기 부분, 가스주입 부분 그리고 반응 가스 분석 부분으로 구성하였다. 반응기에 공급되는 가스의 경우 NO, NH₃, N₂, O₂의 각 bomb로부터 MFC (Mass Flow Controller, MKS Co.)를 사용하여 유량을 조절하였다. 또한, 수분공급은 N₂가 bubbler 를 통과하여 수분을 함유한 N,를 반응기에 주입하였 으며 이때 공급되는 양을 일정하게 조절하기 위하여 이중 jacket 형태의 bubbler 외부에 circulator를 이용 하여 일정온도의 물을 순환시켰다. 가스공급 관은 전 체에 걸쳐 stainless steal 관으로 제작하였으며 NO와 NH₃가 반응하여 생기는 NH₄NO₂, NH₄NO₃ 염 생성 에 따른 plugging 현상을 방지, 수분의 응축을 방지하 기 위해서 heating band를 감아 180℃ 온도로 일정하 게 유지하였다. 반응기는 연속 흐름형 고정층 반응장 치로서 내경 8 mm, 높이 600 mm인 석영(quartz)관으 로 제작하였으며 촉매층을 고정하기 위해서 유리솜 (quartz wool)을 사용하였다. 반응기 온도의 경우, 상 부에 장착된 K-type의 thermal couple을 이용하여 PID 온도제어기를 통해 조절하였으며, 가스 유입부 의 온도를 측정하기 위하여 촉매층 상부에 thermal couple을 설치하여 촉매층 온도를 측정하였다. 반응 물과 생성물의 농도를 측정하기 위하여 NO와 N₂O 는 비분산 적외선 가스분석기 (Uras10E, Hartman & Braun Co.)를 사용하였다. NO2는 주 반응기 출구부 에서 검지관 (9L, Gas Tec. Co.)을 이용하여 측정하였 으며 암모니아의 농도는 검지관(3L, 3La, 3M, Gas

Fig. 1. Flow diagram for the preparation of impregnation method: (a)W/TiO₂, (b) W/Ce/TiO₂.

Tec. Co.)을 사용하였다. 모든 가스는 분석기로 유입 되기 전에 수분은 chiller 내의 수분 트랩에서 제거시 킨 후 유입하였다. 반응 조건 및 실험 변수는 표 1에

나타내었다. 본 연구에서의 Ce 첨가에 따른 W/TiO₂ 의 반응활성 비교를 위하여 제거 대상인 NO_x는 NO 749 ppm, NO₂ 49 ppm로 하였으며 NO_x 제거를 위한

Fig. 2. Schematic diagram of fixed bed SCR reaction system.

환원제인 NH₃는 850 ppm, H₂O는 6%, O₂는 10%, 공 간속도 (Space velocity; S.V.)는 180,000 h⁻¹로 하였다. 또한 공간속도, 산소농도별 활성비교 시에는 NO_x, NH₃는 앞전 실험과 동일하게 하였으며, H₂O는 6%, O₂는 3~15%, S.V.를 60,000~180,000 h⁻¹로 조절하여 실험을 수행하였다. NH₃/NO_x ratio 실험은 앞전 실험 과 동일하게 고정하고 NH₃의 농도를 조절하여 0.6~1.2의 비율로 실험하였다. 또한 장기간 열적 충 격에 대한 촉매의 반응활성 비교를 위하여 앞서 제조 된 W [13]/Ce [4]/TiO₂ 촉매를 관형로에서 10°C/min 의 승온속도로 관형로에서 550℃ 600시간 열처리하 여 실험을 수행하였다. 촉매의 반응활성인 NO_x 전환 율은 다음과 같이 식 1에 정의하였다.

$$NOx \ conversion \ = \frac{[[NO] + [NO_2]]_{in} - [[NO] + [NO_2]]_{out} - 2[[N_2 \ O]]_{out}}{[[NO] + [NO_2]]_{in}}$$
(1)

Table 1	 Experimeta 	l condition ir	n fixed	bed	reactor
---------	--------------------------------	----------------	---------	-----	---------

Paticle si	40~50	
	NO (ppm)	749
Inlet gas conc.	$O_2 (ppm)$ $O_2 (vol.%)$	49 3~15
(N ₂ balance)	H ₂ O (vol.%)	6
	NH_3/NO_x ratio	0.6~1.2
Space vel	60,000~180,000	

2.3 촉매 특성 분석

2.3.1 BET (Brunauer-Emmett-Teller)

촉매의 기공 부피 및 비표면적 측정은 Micromeritics Co.의 ASAP 2010C 장비를 사용하였으며, BET (Brunauer-Emmett-Teller)식을 이용하여 비표면적을 구하였다. 이때 각각의 시료는 300℃에서 2h 동안 진 공상태로 가스를 제거하여 분석하였다.

J. Korean Soc. Atmos. Environ., Vol. 34, No. 6, December 2018, pp. 759-771

763

2. 3. 2 H₂-TPR (Temperature Programmed Reduction)

촉매의 환원능력의 평가는 촉매 산화상태를 확인 하기 위하여 H_2 -TPR 분석을 수행하였다. 0.1 mm 이 하로 분쇄된 0.3 g의 촉매를 충진 후 50 cc/min의 5% O₂/He을 흘리며 400°C까지 10°C/min으로 승온 한 후 30분간 유지하여 촉매 표면의 수분을 제거하고 또 한 촉매를 활성화시켰다. 이후 100°C으로 하강한 후 50 cc/min의 10% H_2 /Ar 가스를 주입하며 촉매표면의 흡탈착을 안정화시켰다. 이후 10% H_2 /Ar 가스를 지 속적으로 흘리면서 10°C/min의 승온속도로 850°C까 지 승온하여 TCD로 소모된 H_2 농도를 확인하였다. 분석기는 2920 Autochem (Micromeritics)을 사용하 였으며, 농도 측정을 위한 detector는 TCD (Thermal conductivity Detector)를 사용하였다.

2.3.3 Ramman spectroscopy

Raman spectre는 Argon laser가 채택된 Spex사의 1404p를 사용하였다. Laser Power는 300 mW이고, scan 은 100이고 resolution은 10 cm⁻¹로 하였다.

2.3.4 XPS (X-ray Photoelectron Spectroscopy)

XPS 분석은 Thermo사의 Alpha-K를 사용하였으며, excitation source로서 Al Ka monochromatic (1486.6 eV)를 사용하였다. 촉매를 약 100°C의 온도에서 25시 간 건조하여 포함되어 있는 수분을 완전히 제거한 후 XPS 기기의 진공도를 10⁻⁶ Pa로 유지하기 위하여 표면 sputtering 및 etching을 하지 않고 분석하였다. 시료 내에 존재하는 원소를 wide scanning spectrum으로 분석하여 binding energy와 intensitiy를 확인하였다.

3. 결과 및 고찰

3.1 Ce 첨가에 따른 W/TiO₂ 촉매의 반응활성

본 연구에서는 W/TiO₂(A), Ce/TiO₂(A), W/Ce/ TiO₂(A) 촉매를 이용하여 W 및 Ce를 담지하였 때

Fig. 3. The effect of prepared method of W-based and Ce-based catalyst on the SCR reaction (180,000 h^{-1} of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, 10% O₂, 6% H₂O).

SCR 반응활성을 비교하였으며 그 결과를 그림 3에 나타내었다. 실험결과, W/TiO₂(A) 촉매의 경우, 450~550°C의 고온에서 약 87%의 반응활성이 나타내 며 가장 우수하였으나, 그 이하의 온도에서 급격한 반응활성 저하를 나타내며 온도범위가 매우 좁은 것 을 확인하였다. 반면, Ce/TiO₂(A) 촉매의 경우, 350~500°C에서 75~82%의 활성을 보였으나 550°C 에서 49%로 급격한 활성 저하를 확인하였다. W/Ce/ TiO₂(A) 촉매의 경우, 550°C에서 W/TiO₂ 촉매와 비 교하였을 때 약 14%의 활성감소가 나타났지만 400°C 에서 약 16%, 350°C에서 약 47% 반응활성이 증가하 는 것을 확인할 수 있었다.

3.2 Ce 첨가위치 및 담지량에 따른 SCR 반응활성

Liang et al. (2011)에 따르면 Ce가 첨가된 촉매의 경우, TiO₂에 대하여 Ce의 함량, 첨가위치, 소성 조건 등의 여러 가지 제조방법에 따라 활성에 차이를 나타 낸다고 보고되고 있다. 따라서 본 연구에서는 Ce의 첨가위치 및 함량에 따른 SCR 반응활성 평가를 수행 하였으며 그림 4에 나타내었다. 반응활성 비교를 위 하여 제조된 촉매의 경우, TiO₂(A)에 Ce를 담지하여 제조한 Ce/TiO₂(A)에 W을 담지한 W/Ce/TiO₂(A),

Fig. 4. The NO_x conversions of W-based catalyst on the selective catalytic reduction: Ce loading = 10 wt .%. (180,000 h^{-1} of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, 10% O₂, 6% H₂O).

반대로 TiO₂(A)에 W을 담지하여 제조한 W/TiO₂(A) 에 Ce를 담지하는 Ce/W/TiO₂(A), W과 Ce를 TiO₂(A) 에 동시에 담지하는 W-Ce/TiO₂(A) 촉매를 사용하였 으며 Ce의 함량을 10 wt.%와 4 wt.%로 달리하여 반응 활성을 비교하였다. Ce 첨가위치별 실험 결과, W[13]/ Ce[10]/TiO2(A) 촉매의 활성은 350~500°C에서 약 88%로 우수한 활성을 나타내었으며, 550℃에서는 약 73%로 W[13]/TiO₂(A)보다 14% 낮게 나왔지만, Ce[10]/ W[13]/TiO₂(A), W[13]-Ce[10]/TiO₂(A)와 비교하였 을 때, 전 범위에서 가장 우수하게 나타나는 것을 확 인하였다. W[13]-Ce[10]/TiO2(A) 촉매의 경우, W[13]/ Ce[10]/TiO₂(A) 촉매와 비교하였을 때 350~400℃의 온도범위에서의 활성이 약 1% 감소됨에 따라 활성 차이가 미비하였고, 450℃ 이상의 온도에서 약 3~7% 의 활성감소를 나타내었다. Ce[10]/W[13]/TiO₂(A)촉 매의 경우, W[13]/Ce[10]/TiO₂(A), W[13]-Ce[10]/ TiO₂(A)와 비교하였을 때 전 온도범위에서 10% 이상 의 큰 활성감소를 나타내었다. 위 3가지 촉매를 비교 하였을 때 Ce의 첨가위치에 따라 반응활성이 상이하 였으며, Ce[10]/W[13]/TiO₂(A)는 반응활성이 크게 감소하였다. Ce가 첨가된 위치에 따라 반응활성이 상 이하였으므로 이에 따라 첨가위치가 반응활성에 미

Fig. 5. H_2 -TPR profiles of the W[13]/Ce[10]/TiO₂(A), W[13]-Ce[10]/TiO₂(A) and Ce[10]/W[13]/TiO₂(A) catalysts.

Fig. 6. Raman spectra of the W[13]/Ce[10]/TiO₂(A), W[13]-Ce[10]/TiO₂(A) and Ce[10]/W[13]/TiO₂(A) catalysts.

치는 영향을 알아보고자 H₂-TPR, Raman spectra 분 석을 수행하였으며 그 결과를 그림 5, 그림 6에 나타 내었다. H₂-TPR 분석을 수행하였을 때, 3가지 촉매에 500~700℃ 범위에서 3개의 H₂ 소모 피크가 형성되는 것을 확인할 수 있었다. Peng *et al.* (2012)과 Liang *et al.* (2011)에 의하면 500℃ 부근에서 발생하는 첫 번 째 피크는 화학양론적 Ce 종 (Ce⁴⁺-O-Ce⁴⁺)으로써 결합되어 있는 산소가 환원된다고 하였고, 600℃ 부 근에서 발생하는 두 번째 피크는 비화학양론적 Ce 종 (Ce⁴⁺-O-Ce³⁺)으로써 결합되어 있는 산소의 환원에 의한 것이라고 말하고 있으며, 세 번째 발생피크는 Bulk CeO₂ 종이라고 언급하고 있다. 본 연구에서 W[13]/Ce[10]/TiO₂(A) 촉매는 537°C, 571°C에서 피 크가 형성되었고 W[13]-Ce[10]/TiO₂(A) 촉매에서는 524°C, 560°C에서 피크가 형성되었다. Ce[10]/W[13]/ TiO₂(A) 촉매에서는 515°C에서 피크가 형성되었으 며 700°C에서 Bulk CeO₂에 의한 H₂ 소모 피크가 형 성됨을 확인할 수 있었다. 또한 3가지 촉매 중 활성이 가장 우수하였던 W[13]/Ce[10]/TiO₂(A) 촉매에서 H₂ 소모 피크가 가장 크게 형성되는 것을 확인할 수 있었다. 3가지 촉매에 대하여 활성이 가장 우수하였 던 W[13]/Ce[10]/TiO₂(A) 촉매에서 H₂ 소모 피크가 가장 오른쪽으로 Shift 됨을 확인할 수 있었는데, 이 는 Eibl *et al.* (2001)이 언급한 것처럼 W[13]/Ce[10]/

Fig. 7. The NO_x conversions of W-based catalyst on the selective catalytic reduction: W[13]/TiO₂(A), W[13]/Ce[10]/TiO₂(A), W[13]/Ce[4]/TiO₂(A) (180,000 h⁻¹ of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, 10% O₂, 6% H₂O).

TiO₂(A) 촉매에서 W-O-Ce 결합을 가장 많이 형성하 고 이에 따라 활성이 가장 우수하였다고 판단되어진 다. 다음으로 Raman spectra 분석을 수행하였을 때, 3가지 촉매 모두에서 CeO2에 대한 Raman 피크를 확 인할 수 있었다. Ce[10]/W[13]/TiO₂(A) 촉매의 경우, 463 cm⁻¹에서 Crystalline CeO₂ 피크가 형성되는 것 을 확인할 수 있었으며 이는 Ce를 가장 마지막에 담 지함으로써 소성과정에서 Ce가 촉매 내에 분산되지 않고 Ce끼리 결합을 하면서 결정형이 나타난 것이라 고 판단되어진다. 또한 Ce의 함량을 4 wt.%로 하여 제조한 W[13]/Ce[4]/TiO2(A) 촉매를 앞서 제조된 W[13]/Ce[10]/TiO₂(A)와 W[13]/TiO₂(A)의 활성을 비교하였으며 그림 7에 나타내었다. 그 결과, 400~ 500℃ 범위의 반응활성이 가장 우수하였으며, 350~ 550℃의 중·고온에서 전반적으로 82% 이상의 반응 활성을 보이는 W[13]/Ce[4]/TiO2 촉매가 가장 우수 하다고 판단되어진다.

3. 3 TiO₂의 물리화학적 특성에 따른 W/Ce/TiO₂ 촉매의 반응활성

Diebold (2003)의 말에 따르면, TiO₂는 anatase, rutile, brookite의 3가지 결정구조를 가지며 이 중 rutile 과 anatase만이 촉매로서 활성을 가질 수 있다고 한 다. TiO₂는 촉매 지지체로 널리 사용되고 있으며, 용 도에 따라 물리화학적 특성이 서로 다르게 제조되고 있다. 또한 Alemany *et al.* (1995)이 언급한 것처럼 제 조방법 및 열처리 조건 등에 의해 불순물의 함량 및 비표면적이 상이하고 제조조건에서의 차별화로표면 화학성분 및 결정구조가 다르다. 이러한 TiO₂의 비표

	BET area (m ² /g)	Average pore diameter (nm)	O/Ti ratio (%)	H ₂ comsumption (mmol/g)	TiO ₂ slurry pH
TiO ₂ (A)	344.7245	7.41	1.89	29.76	5.93
TiO ₂ (B)	76.65	15.79	1.47	7.94	3.99
TiO ₂ (C)	276.04	12.71	1.42	3.32	6.30
TiO ₂ (D)	97.44	19.71	1.79	15.719	2.50
TiO ₂ (E)	11.01	27.45	2.16	3.98	7.03
TiO ₂ (F)	43.3314	3.61	1.83	3.48	3.87
TiO ₂ (G)	92.90	5.89	1.83	5.11	6.63

여 촉매의 물리화학적 특성을 변형시켰으며 8:2의 비율로 제조된 촉매에서 TiO₂-SiO₂의 비표면적이 증 가함에 따라 V이 고분산되어 반응활성이 우수하였다 고 말하고 있다. 또한 Gao *et al.* (2014)은 CeO₂/TiO₂ 촉매를 pH를 달리하여 제조하여 BET와 TPR 분석을 수행하였으며 촉매에서 비표면적이 크고 Redox 특성 이 우수할수록 반응활성이 우수하다고 말하고 있다. 이에 따라 본 연구에서 다양한 물리화학적 특성을 지 닌 TiO₂에 W과 Ce를 담지한 W/Ce/TiO₂ 촉매를 이 용하여 반응활성과의 상관관계에 대하여 알아보았으 며 BET 분석과의 상관관계를 그림 9에, XPS와 H₂-TPR 분석에 대한 상관관계를 그림 10, TiO₂ 슬러

면적, 불순물의 함량, 입자크기 및 공극 크기에 따라 활성금속 간의 화학적 결합이 촉매 활성에 영향을 미 치는 것으로 알려져 있다. 따라서 본 연구에서는 다 양한 물리화학적 특성을 지니고 있는 상용 TiO,들을 사용하였으며 각각의 물리화학적 특성에 대하여 표 2에 나타내었으며 각각의 TiO2를 이용한 W/Ce/TiO2 촉매의 반응활성 실험을 그림 8에 나타내었다. 실험 결과, TiO₂(A)를 사용한 W/Ce/TiO₂(A) 촉매에서 550°C 에서 약 84%, 400~500℃에서 약 89~ 90%로 중·고온 영역에서 반응활성이 가장 우수한 것을 확인할 수 있 었다. 또한 400~550°C에서 TiO₂(B)는 약 79~81%, TiO₂(C)는 80~82%, TiO₂(D)는 74~79%, TiO₂(F)는 62~70%의 활성을 나타내었으며, TiO₂(E)와 TiO₂(G) 를 사용한 W/Ce/TiO2 촉매에서는 전 온도범위에서 반응활성이 30% 이하로 나타나는 것을 확인할 수 있 었다. 앞서 수행된 다양한 연구들을 살펴보면 촉매의 물리화학적 특성과 반응활성과의 상관관계에 대한 내용들을 많이 언급하고 있다. Kwon et al. (2013)의 연구에서는 V/TiO,를 건식 볼밀의 시간별로 촉매의 물리화학적 특성을 XPS, BET, TPR 등의 분석을 통하 여 반응활성과 상관관계를 확인하였으며 최적 볼밀 시간에서의 비표면적과 (V⁴⁺ + V³⁺)/V⁵⁺과 반응활 성과의 관계를 확인하였다. Ettireddy et al. (2014)은 V/TiO₂-SiO₂ 촉매에서 TiO₂와 SiO₂의 비율을 달리하

Fig. 8. The effect of TiO₂ on reaction of W[13]/Ce[4]/TiO₂ catalyst: (a) NO (180,000 h⁻¹ of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, 10% O₂, 6% H₂O).

Fig. 9. The effect of physicochemical properties on reaction of W[13]/Ce[4]/TiO₂(A) catalyst: (a) BET surface area (b) Average pore diameter (180,000 h^{-1} of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, 10% O₂, 6% H₂O).

Fig. 10. The effect of physicochemical properties on reaction of W[13]/Ce[4]/TiO₂(A) catalyst: (a) O/Ti ratio (b) H₂ consumption (180,000 h⁻¹ of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, 10% O₂, 6% H₂O).

리(Slurry)의 pH와의 상관관계를 그림 11에 나타내 었다. BET 분석과의 상관관계를 보면, 그림 9-(a), 그 림 9-(b)에서 보는 것 같이 BET가 클수록, Average pore diameter가 작을수록 반응활성이 우수해지는 경 향을 확인하였다. 다음으로 그림 10의 O/Ti ratio, H₂ 소모량 및 그림 11에 나타낸 TiO₂ 슬러리(Slurry)의 pH와 반응활성 간의 상관관계를 확인하였을 때 반응 활성과의 상관관계는 확인할 수 없었다.

3.4 조업조건에 따른 W/Ce/TiO₂ 촉매의 반응활성

앞서 Ce의 첨가위치, 담지량 및 TiO₂의 선정을 통

Fig. 11. The effect of physicochemical properties on reaction of W[13]/Ce[4]/TiO₂(A) catalyst: TiO₂ Slurry pH (180,000 h⁻¹ of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, 10% O₂, 6% H₂O).

Fig. 12. The effect of spece velocity on reaction of W[13]/ Ce[4]/TiO₂(A) catalyst: $(60,000 \sim 180,000 h^{-1} \text{ of GHSV}, 749 \text{ ppm} \text{ NO}, 49 \text{ ppm NO}_2, 850 \text{ ppm NH}_3, 10\% \text{ O}_2, 6\% \text{ H}_2\text{O}).$

하여 350~550℃ 범위에서 반응활성이 가장 우수한 W[13]/Ce[4]/TiO₂(A) 촉매를 이용하여 다양한 조업 조건에서의 촉매 활성평가를 수행하였다. 다양한 조 업조건으로써 공간속도, 산소농도, NH₃/NO ratio 및 열적 안정성 실험을 통하여 반응활성을 평가하였다. 먼저, 공간속도를 60,000 h⁻¹, 120,000 h⁻¹, 180,000 h⁻¹ 에서의 반응활성평가를 수행하였으며, 그림 12에 나타 내었다. 그 결과, 공간속도가 낮아질수록 400~550℃

Fig. 13. The effect of Oxygen concentration on reaction of W[13]/Ce[4]/TiO₂(A) catalyst (60,000 h⁻¹ of GHSV, 749 ppm NO, 49 ppm NO₂, 850 ppm NH₃, $3 \sim 15\%$ O₂, 6% H₂O).

사이에서 NOx 전환율이 약 5~10% 씩 증가하는 것을 확인하였으며, 350°C에서 180,000 h⁻¹과 120,000 h⁻¹ 에서의 반응활성은 약 8% 차이를 보였다. 다음으로 산소의 농도를 3, 10, 15%로 달리하여 반응활성을 평 가하였으며, 그림 13에 나타내었다. 산소농도가 3% 에서 15%로 증가될 때 300℃ 아래에서의 NOx 전환 율이 약 16~28% 정도 크게 증가하였으나 350°C에서 는 반응활성 변화가 약 1%가 나타냈고 400~550℃에 서의 반응활성은 약 1~3% 정도의 증감으로 활성차 이가 미미하였다. 다음로 NH, 농도를 달리하여 NH,/ NO ratio를 0.6~1.2로 조절하여 반응활성평가를 수 행하였으며 그림 14에 나타내었다. NH₃/NO ratio가 높아질수록 환원제양의 증가로 인한 NO_x 전환율이 증가하였으며 이에 따라 NO, 발생량이 감소하는 것 을 확인하였다. Zheng et al. (2005)에 따르면 W/TiO, 촉매의 경우, 500℃ 이상의 고온영역에서 우수한 NO_x 전환율을 나타내지만, 정시간 열적인 충격을 받을 경 우, 촉매의 활성저하, 비표면적 감소, TiO2 소결현상 등이 발생한다는 연구 결과가 보고되고 있다. 또한 Nam et al. (2014)에 의하면 W/TiO2 촉매를 이용하여 500℃와 550℃에서 900시간 공기분위기에서 열적 충 격을 통하여 열충격 전후의 촉매반응활성을 비교하 였으며, 시간이 지날수록 입자의 크기가 커지고 점차

Fig. 14. The effect of NH₃/NO_x mole ratio on reaction of W[13]/Ce[4]/TiO₂(A) catalyst: (a) NO (b) NO₂ (60,000 h⁻¹ of GHSV, 749 ppm NO, 49 ppm NO₂, NH₃/NO_x ratio 0.6~1.2, 10% O₂, 6% H₂O).

Fig. 15. The effect of thermal aging on reaction of Fresh vs aged W[13]/Ce[4]/TiO₂(A) catalyst ($60,000 h^{-1}$ of GHSV, 749 ppm NO, 49 ppm NO₂, NH₃/NO_x ratio 1, 10% O₂, 6% H₂O).

J. Korean Soc. Atmos. Environ., Vol. 34, No. 6, December 2018, pp. 759-771

활성이 감소함을 확인하였다. 따라서 앞선 연구를 토 대로, W[13]/Ce[4]/TiO₂(A) 촉매가 장시간 열적인 충 격에 의해 반응활성이 저하되는지를 확인하기 위해 서 관형로에서 550°C로 600시간 동안 공기 분위기에 서 열처리를 한 후에 촉매의 반응활성 변화를 확인하 였으며 그림 15에 나타내었다. 그 결과, 550°C에서 600시간 동안 열을 가해준 이후에도 초기 변하지 않 는 것을 확인하였다.

4. 결 론

본 연구를 통하여 중·고온 영역의 반응활성 증진 을 위하여 W/TiO₂에 Ce 첨가위치 및 담지량 조절, TiO₂ 별 실험을 수행을 하였으며, 다양한 조업조건에 서의 반응활성 평가 및 열적 충격에 대한 촉매의 반 응활성을 관찰하였으며 다음과 같은 결론을 도출할 수 있었다.

- Ce의 첨가위치를 달리하였을 때, W/TiO₂(A)에 Ce가 담지될 경우, Ce가 W/TiO₂ 촉매와 결합하지 않고 Ce끼리 결합을 할때, crystalline CeO₂가 형성 되고 Bulk CeO₂ 크게 형성되어 활성이 저하되었 다고 판단되어지며, Ce/TiO₂에 W이 담지될 경우, W과 Ce가 W-O-Ce 결합을 형성하여 crystalline CeO₂나 Bulk CeO₂이 형성되지 않으며 Ce 함량을 4 wt.%로 담지하였을 때, 실질적인 중·고온 영역 (350~550°C)의 반응활성이 가장 우수한 촉매라고 판단되어진다.
- 2) 다양한 물리화학적 특성을 지닌 상용 TiO₂로 제조 된 촉매와 반응활성과의 상관관계를 확인하였을 때, 촉매의 비표면적이 크고, Average pore diameter가 작을 수록 Ce와 W이 고분산되어 반응활성 이 우수하였다고 판단되어진다.
- 3) 다양한 조업조건에 따른 반응활성을 평가하였을 때 공간속도가 낮을수록, NH₃/NO ratio가 높을수 록 중 · 고온의 반응활성이 우수하였으며, 산소농 도가 높아지더라도 350~550℃의 온도범위에서는

반응활성 차이가 미미하였으므로 다양한 산소농 도가 배출되는 중·고온의 NO_x 처리시설에 적용 가능할 것이라고 판단되어진다.

 4) 550℃에서 600시간 동안 열처리 후에도 촉매의 반 응활성이 변하지 않는 것으로 보아 촉매가 변형되고 열적 내구성을 가지고 있다고 판단되어진다.

감사의 글

본 연구는 환경부 Global-Top Project "고효율 복합 SCR/AOC 촉매 개발"(과제번호: 2016 0020 80004) 과 제의 지원에 의해 수행되었으며 이에 감사드립니다.

References

- Alemany, L., Lietti, L., Ferlazzo, N., Forzatti, P., Busca, G., Giamello, E., Bregani, F. (1995) Reactivity and physicochemical characterization of V₂O₅-WO₃/TiO₂ De-NO_x catalysts, Journal of Catalysis, 155(5), 117-130.
- Amiridis, M.S., Duevel, R.V., Wachs, E. (1999) The effect of metal oxide additives on the activity of V₂O₅/TiO₂ catalysts for the selective catalytic reduction of nitric oxide by ammonia, Applied Catalysis B: Environmetal, 20(2), 111-122.
- Armor, J.N. (1995) Catalytic removal of nitrogen oxide: where are the opportunities? Catalysis Today, 26(2), 99-105.
- Busca, G., Centi, G., Trifiro, F. (1985) Surface characterization of a grafted vanadium-titanium dioxide catalyst, Journal of Chemical Society, 81, 1003-1014.
- Busca, G., Lietti, L., Ramis, G., Berti, F. (1999) Characterization and reactivity of V₂O₅-MoO₃/TiO₂ de-NO_x SCR catalysts, Journal of Catalysis, 187(2), 419-435.
- Chen, J.P., Yang, R.T. (1992) Role of WO₃ in mixed V_2O_5 -WO₃/ TiO₂ catalysts for selective catalytic reduction of nitric oxide with ammonia, Applied Catalysis A: General, 80(1), 135-148.
- Cobb, D., Glatch, L., Ruud, J., Snyder, S. (1991) Application of selective catalytic reduction (SCR) technology for NOx reduction from refinery combustion sources, Environmetal progress, Environmetal Progress, 10(1), 49-59.

Cooper, C., Alley, F.C. (1994) Air Pollution Controll: A Design

Approach, Waveland Pr Inc., 2nd Ed., 37-38.

- Diebold, U. (2003) The surface science of titanium dioxide, Surface Science Reports, 48, 53-229.
- Eibl, S., Gates, B.C., Knozinger, H. (2001) Structure of WO_x/TiO₂ Catalysts Prepared from Hydrous Titanium Oxide Hydroxide: Influence of Preparation Parameters, Langmuir, 17(1), 107-115.
- Ettireddy, P., Kotrba, A., Spinks, T., Boningar, T. (2014) Development of low temperature selective catalytic reduction (SCR) catalysts for future emissions regulations, Applied Catalysis B: Environmental, 91, 546-553.
- Gao, X., Jiang, Y., Fu, Y., Zhong, Y., Luo, Z., Cen, K. (2010) Preparation and characterization of CeO₂/TiO₂ catalysts for selective catalytic reduction of NO with NH₃, Catalysis Communications, 11(5), 465-469.
- Giakoumelou, I., Fountzoula, C., Kordulis, C., Boghosian, S. (2006) Molecular structure and catalytic activity of V_2O_5 /TiO₂ catalysts for the SCR of NO by NH₃: In situ Raman spectra in the presence of O₂, NH₃, NO, H₂, H₂O, and SO₂, Journal of Catalysis, 239(1), 1-12.
- Habibullah, A., Lardi, P., Passmore, M. (2009) LNG conceptual design strategies, Worley parson: Resources & Energy, 17-18.
- Jang. B.J. (2008) The research of reaction characteristic and the improve-metn of efficiency of TiO₂ Catalyst for SCR in high temperature, Kyonggi Univ., M. S. Thesis.
- Joshua, R., Zygarlicke, J.S., Bruce, C., Donald, P.F. (2008) SCR deactivation in a full-scale cofired utility boiler, Fuel, 87(7), 1341-1347.
- Karami, A., Salehi, V. (2012) The influence of chromium substitution on an iron-titanium catalyst used in the selective catalytic reduction of NO, Journal of Catalysis, 292, 32-43.
- Kwon, D.W., Park, K.H., Hong, S.C. (2013) The influence on SCR activity of the atomic structure of V₂O₅/TiO₂ catalysts prepared by a mechanochemical method Applied Catalysis A: General, 451, 227-235.
- Kwon, D.W., Hong, S.C. (2015) Promotional effect of tungstendoped CeO₂/TiO₂ for selective catalytic reduction of NOx with ammonia, Applied Surface Science, 356, 181-190.
- Lee, S.M., Kim, S.S., Hong, S.C. (2012) Systematic mechanism study of the high temperature SCR of NO_X by NH_3 over a W/TiO₂ catalyst, Chemical Engineering Science, 79, 177-185.
- Liang, C., Junhua, L., Maofa, G., Lei, M., Huazhen, C. (2011)

Mechanism of selective catalytic reduction of NO_x with NH_3 over CeO_2 - WO_3 catalysts, Chineses Journal of Catalysis, 32, 836-841.

- Nam, I.S. (1988), Control of NOx emission from stationary source, Chemical Industry Technology, 6, 155.
- Nam, K.B., Kang, Y.S., Hong, S.C. (2015) A Study on the Reaction Characteristics and Efficiency Improvement of Hightemperature SCR catalyst, Applied Chemical Engineering, 26(6), 666-673.
- Nova, I., dall'Acqua, L., Lietti, L., Giamello, E., Forzatti, P. (2001) Study of thermal deactivation of a de-NO_x commercial catalyst, Applied Catalysis B: Environmetal, 35(1), 31-42.
- Peng, Y., Li, J., Chen, J., Han, J., Zhang, H., Han, W. (2012) Alkali Metal Poisoning of a CeO₂-WO₃ Catalyst Used in the Selective Catalytic Reduction of NO_x with NH₃: an Experimental and Theoretical Study, Environmental Science Technology, 46(5), 2864-2869.
- Pritchard, S., DiFrancesco, S., Kaneko, S. (1995) Optimizing SCR catalyst design and performance for coal-fired boilers, EPA. 28-29.
- Ramis, G., Yi, L. (1996) Ammonia activation over catalysts for the selective catalytic reduction of NO_x and the selective catalytic oxidation of NH₃. An FT-IR study, Catalysis Today, 28(4), 373-380.
- Shan, W., Liu, F., He, H., Shi, X., Zhang, C. (2011) Novel cerium– tungsten mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃, Chemical Communications, 47, 8046-8048.
- Shan, W., Liu, F., He, H., Shi, X., Zhang, C. (2012) A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃, Catalysis Today, 201, 139-144.
- Zheng, Y., Jensen, A.D., Johnsson, J.E. (2005) Deactivation of V_2O_5 -WO_3-TiO_2 SCR catalyst at a biomass-fired combined heat and power plant, Applied Catalysis B: Environmetal, 60(3), 253-264.

Authors Information

김민수(경기대학교 일반대학원 환경에너지공학과 학생) 이승현((주)테크윈 연구원) 홍성창(경기대학교 환경에너지공학과 교수)