Journal of Korean Society for Atmospheric Environment Vol. 36, No. 5, October 2020, pp. 579-588 https://doi.org/10.5572/KOSAE.2020.36.5.579 p-ISSN 1598-7132, e-ISSN 2383-5346

논 문

2018년 여름 서울의 HONO 분포특성 및 광화학 영향 HONO Measurement in Seoul during Summer 2018 and its Impact on Photochemistry

길준수¹⁾, 손지원¹⁾, 강성구²⁾, 박준형¹⁾, 이미혜^{1),2),*}, 전은미³⁾, 심미희³⁾ ¹⁾고려대학교 이과대학 지구환경과학과, ²⁾고려대학교 그린스쿨대학원, ³⁾서울특별시 보건환경연구원

접수일 2020년 7월 30일 수정일 2020년 8월 13일 채택일 2020년 8월 31일

Received 30 July 2020 Revised 13 August 2020 Accepted 31 August 2020

*Corresponding author Tel : +82-(0)2-3290-3645 E-mail : meehye@korea.ac.kr

Junsu Gil¹⁾, Jeewon Son¹⁾, Sunggu Kang²⁾, Joonhyoung Park¹⁾, Meehye Lee^{1),2),*}, Eunmi Jeon³⁾, Mihee Shim³⁾

¹⁾Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea ²⁾Graduate School of Energy and Environment (Green School), Korea University, Seoul, Republic of Korea

³⁾Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea

Abstract HONO photolysis is an early morning source of OH radicals in urban environment, which expedites the photooxidation of volatile organic compounds (VOC), leading to O_3 production. From July 14th to August 22nd 2018, HONO was measured at Korea University using a parallel plate diffusion scrubber coupled with lon Chromatography (PPDS-IC), in conjunction with major reactive gases (O_3 , NO, and NO₂). The collection efficiency of PPDS was estimated as 91.8~99.9% from the side-by-side measurement. HONO mixing ratio ranged between 0.01 to 0.79 ppbv with a mean of 0.28 ppbv, which was higher in high-O₃ episode than non-episode. Likewise, the OH production from HONO photolysis was higher by 0.04 pptv sec⁻¹ in high-O₃ episodes, when the daily maximum O₃ exceeded 100 ppbv, than non-episode. The hourly maximum O₃ reached 170 ppbv under severe heat waves. When the diurnal variations of O₃ was simulated with the measured HONO using the Framework for 0-D Atmospheric Modelling (FOAM), the daily maximum O₃ changed by 8~17 ppbv according to the HONO and VOC levels. In particular, the daily maximum O₃ was increased under non-episode conditions with an increased HONO, albeit low level.

Key words: HONO, Photolysis, O₃ formation, Diffusion scrubber, FOAM

1. 서 론

HONO는(반응 1)을 통해 광분해 되어 소멸되므로 밤에 높은 농도를 유지한다(Alicke *et al.*, 2003).

HONO + $hv \rightarrow$ NO + OH (v < 400 nm) (반응 1)

따라서 HONO는 이른 오전 시간 OH 반응기의 주 생성원이며, 하루 전체 OH 반응기 생성량의 최대 30%를 차지한다(Ryan *et al.*, 2018; Alicke *et al.*, 2002). 이 OH는 휘발성 유기화합물(Volatile Organic Compounds, VOCs)을 산화시켜, 최종적으로 O₃ 생성에 기여한다(Kleffmann, 2007; Alicke *et al.*, 2003; Aumont *et al.*, 2003). 또한 HONO는 광분해 시 소량 의 NO를 공급하여 HO_x 뿐 아니라 NO_x 사이클에도 영향을 미치므로(Pitts and Pitts, 2000), 결과적으로 O₃의 전구 물질인 NO_x와 VOCs 산화에 모두 관여하 게 된다. 선행 연구에 따르면 서울의 O₃ 농도는 NO_x 보다는 VOCs에 민감한 것으로 나타났다(Kim *et al.*,

2018a; Kim et al., 2018b). 그러므로, O₃의 생성 기작 을 정확하게 이해하는데 HONO의 농도와 광화학적 영향을 파악하는 것이 매우 중요하다.

대기 중 0, 농도는 기온이 높아짐에 따라 상승하는 경향을 보인다(Han et al., 2016). 서울의 고농도 O₃ 발생은 기온과 관련이 큰데 (e.g., Han et al., 2013) 연 간 평균 기온의 상승으로 고농도 O₃ 관측 빈도수가 높아지고 있는 것으로 보고되었다(Kim et al., 2018c). 특히 2018년 여름은 일 최고기온 33°C 이상의 폭염 일수가 평년 대비 3배 이상(31.4일) 관측되는 등 고온 현상이 빈번하게 발생하였으며, 이로 인하여 일 평균 100 ppbv가 넘는 고농도 O, 사례일이 9일간 관측되 었다(KMA, 2019; SMGRIPHE, 2019). 본 연구에서는 연중 온도가 가장 높은 장마 후의 여름철 대기 중 HONO를 측정하여 그 분포 특성과 O₃ 농도에 미치 는 영향을 파악하고자 하였다. 이를 위하여 고농도 O₃ 사례 시기를 중심으로 HONO의 분포 특성을 비 교하였으며 O₃ 생성에 미치는 영향은 이론에 근거한 계산과 광화학 모델을 이용하여 정량적인 분석을 수 행하였다.

2. 재료 및 방법

2.1 HONO 및 반응성 미량기체 측정

2018년 7월 14일~8월 22일 동안 서울시 성북구에 위치한 고려대학교 하나과학관 7층(37.59N, 127.03E, 72m asl.)에서 대기 중 미량기체(O₃, NO, NO₂, HONO)를 실시간으로 측정하였다: O₃ (49i, Thermo scientific.), NO (42i, Thermo scientific.), NO₂ (T500U, Teledyne API.). 기상변수는 옥상에서 자동기상관측 장비 (Automatic Weather System, AWS)를 이용하여 측정하였다. VOC는 온라인 가스크로마토그래피-불 꽃 이온화 검출기 (Online Gas Chromatography -Flame Ionization Detector, Online GC-FID)를 이용하 여 종로구 종로5, 6가동 주민센터 (37.57N, 127.01E) 에서 측정된 자료를 서울시 보건환경연구원으로부터 제공받아 사용하였다. 모든 자료는 1시간 평균값을 사용하였다.

HONO는 평행판 확산 스크러버(Parallel-Plate Diffusion Scrubber, PPDS) - 이온 크로마토그래피 (Ion Chromatography, IC) 방법으로 측정하였다(그림 1). 약 1 m의 1/4" PTFE 튜빙을 통해 유입된 공기는, PPDS 내부의 membrane sheet (0.2 µm pore size, Osmoncis)을 통과하며 포집용액(Water, HPLC grade, J.T. Baker)에 포집된다. 포집용액은 0.045 mL min⁻¹의 속도로 6-way valve에서 용리액(3.5 mM Na₂CO₃, NaHCO₃ Solution)과 혼합되어 분석 컬럼 (AS14, Dionex IonPacTM)으로 주입된다. 컬럼을 통 과한 용액은 이후 suppressor (Dionex AERS 500, Thermo scientific.)를 거쳐 전기전도도 검출기(Conductivity detector, Waters 432, Waters)로 주입되어 농 도가 측정된다. HONO 측정의 시간 해상도는 15분이

Fig. 1. The schematics of HONO measurement system using a diffusion scrubber for sampling coupled with IC for chemical analysis.

며, 자료 분석 시 1시간을 평균하여 사용하였다. HONO 농도는 NO₂⁻ 표준용액(100 mL Nitrite Ion Standard Solution, Cica Reagent, Kanto Chemical)을 이용하여 결정하였다. 다점교정(multi-point calibration)을 통해 얻은 통계적 검출한계는 4 pptv, 표준용 액의 최소농도를 이용하여 얻은 실험적 검출한계는 20 pptv이었다.

실험에 사용된 PPDS는 직육면체 모양의 아크릴 판 두 개가, 포집용액층과 공기층, 그리고 이들을 구 분하는 얇은 다공성 멤브레인 막을 감싸고 있는 구조 이며, (Chang, 2001)에 자세히 설명되었다. 이 PPDS 의 포집효율을 결정하기 위하여 이론적 포집 효율(f) 과 실험적 포집 효율(β)을 계산하였다. 본 실험에서 공기의 유입속도는 0.8 L min⁻¹이며 이때 PPDS의 이 론적 포집 효율은 Gormley-Kennedy equation을 정 리한 아래 식으로 계산할 수 있다(De Santis, 1994; Dasgupta, 1984; Gormley and Kenndy, 1948).

$$1 - f = 0.91 \times e^{\frac{-3.77 \times aDL}{Q}}$$
(Å) 1)

f는 포집 효율, D는 HONO의 확산 계수(Diffusion Coefficient), L은 포집기 유로의 길이, Q는 공기의 유 속이다. 평면형 PPDS에서 단면으로 기체를 포집할 시, $\alpha = b/a$ 이며, 이때 a는 포집기의 공기 유로의 두 께, b는 유로의 폭이다. HONO의 확산계수로 0.102~ 0.154 cm² sec⁻¹를 사용하면 (Tang *et al.*, 2014; Benner *et al.*, 1988; Ferm and Sjödin, 1985), 이론적 포집 효 율은 99.92~99.99%였다.

HONO의 실험적 포집 효율을 결정하기 위하여 HONO 표준기체를 제조하였다(그림 2). 표준기체 생 성 방법은 선행연구를 참고하였다(Roberts *et al.*, 2010; Takenaka *et al.*, 2004; Febo *et al.*, 1995). ZA의 유속은 1 L min⁻¹로 설정하였다. 40°C로 가열된 챔버 내부의 DI와 1 M HCl 수용액을 통과한 ZA는 8 cm × 9.5 mm (I.D.) PFA (Perfluoroalkoxy) 재질의 NaNO₂ denuder (NaNO₂+3 mm Granular beads)를 통과하며 아래 (반응 2)를 통해 HONO를 생성한다.

생성된 HONO는 ①에서 스위칭 벨브를 통해 두 경로를 번갈아 지나간다. 첫 번째는 Na₂CO₃를 채운 denuder를 거쳐서 가는 경로이며, 이때 HONO는 denuder에 흡착되어 제거된다. 두 번째 경로는 아무 것도 코팅되어 있지 않은 denuder를 지나가며, 두 경 로를 지난 공기의 NO_x를 NO_x monitor를 이용하여 측정하였다. 이때 두 공기의 NO_x 농도 차이를 생성된 HONO 농도로 산정하였다. 해당 방법을 통해 산정된 HONO 농도는 ~130 ppbv였다.

위 방법을 통해 생성된 HONO 표준기체를 이용하 여 PPDS의 실험적 포집 효율을 계산하였다. ②에서 PPDS 두 개를 연결하여 설치한 후, VP의 유속을 조 절하여 포집 효율을 아래 (식 2)을 이용하여 계산하

Fig. 2. The experimental setup to determine the collection efficiency of HONO by PPDS. HONO gas is generated from NaNO₂ and flows through two PPDSs in series.

581

Fig. 3. Measurements of HONO, O₃, NO_x, and meteorological parameters from Jul 14th to Aug 22nd, 2018.

였다(Lee and Zhou, 1993).

$$\beta = \left(1 - \frac{c_2}{c_1}\right) \times 100(\%) \tag{(4)}$$

공기의 유속이 0.8 L min⁻¹일 때, 실험적 포집 효율 은 91.8%로, 이는 선행 연구의 실험적 포집 효율 (92~93%)과 거의 차이가 없었다(Chang *et al.*, 2008). 따라서 HONO 농도 산출 시 실험적 포집 효율로 보 정하였다.

2.2 FOAM 모델

Framework for 0-D Atmospheric Modelling (F0AM)은 0차원 상자 모델(0-dimension box model) 이다(Wolfe *et al.*, 2016). 산림지역 식생에서 대기로 배출되는 VOC가 산화되는 기작을 모사하기 위해 만 들어진 1-D CAFE (Chemistry of Atmosphere-Forest Exchange) 모델의 구조를 사용하기 때문에, F0AM은 식생에 의한 영향이 예상되는 경우 도시지역이라도

Location	Method	Season, Year	Mean (Range) (ppbv)	NO ₂ (ppbv)
Seoul ¹⁾	Diffusion Scrubber - Ion Chromatography (DS-IC)	Jan, 1993	(0.2~0.9)	_
		May~Jun, 1993	(1.0~5.5)	-
Seoul ²⁾	Long Path - Differential Optical Absorption Spectroscopy (LP-DOAS)	Feb~Mar, 2003	3.5 (0.9~8.6)	42.6
		Aug, 2003	1.23 (0.3~3.7)	18.5
Gwangju ³⁾	Diffusion Scrubber - Luminol Chemiluminenscence (DS-LC)	Mar \sim Apr, 2004	0.5 (0.3~1.1)	-
Seoul ⁴⁾	Denuder scrubber - Ion Chromatography (DS-IC)	May~Jul, 2005	0.4 (0.1~8.6)	56.2
Baknyeong ⁵⁾	Quantum Cascade - Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS)	Oct, 2012	(0.2~0.8)	-
Seoul ⁶⁾	Parallel Plate Diffusion Scrubber - Ion Chromatography (PPDS-IC)	Jul~Aug, 2018	0.28 (0.01~0.79)	17.9

Table 1. HONO measurements from previous studies conducted in South Korea. The NO₂ mixing ratio is averaged value during measuremenmt

¹⁾ (Lee et al., 1994), ²⁾ (Lee et al., 2005), ³⁾ (Chang et al., 2008), ⁴⁾ (Song et al., 2009), ⁵⁾ (Ahn et al., 2013), and ⁶⁾This study.

더 상세한 광화학 모사가 가능하다. F0AM은 MATLAB으로 작성되었으며, 소스도 공개되어 있다 (https://sites.google.com/site/wolfegm/models). 기본 화학 메커니즘으로 MCMv3.3.1을 사용하였다.

3. 결과 및 고찰

3.1 HONO와 O3 변화 특성

전체 측정기간 동안 HONO의 최고 농도는 1 ppbv 를 넘지 않았으며, 평균농도도 0.28 ppbv로 선행연구 와 비교했을 때 비교적 낮았다(그림 3, 표 1). 이는 HONO의 전구물질인 NOx 농도가 낮았으며(22.3 ppbv), HONO의 생성에 중요한 역할을 하는 상대습 도(Relative Humidity, RH) 역시 낮았기 때문이다. 일 반적으로 HONO는 NO2와 RH가 높은 밤에 농도가 높고 낮 시간에는 광분해 반응에 의해 소멸되어 농도 가 낮은 뚜렷한 일 변화를 보인다. 본 연구기간 동안 의 평균 HONO 농도는 오전 6시를 기점으로 감소하 기 시작하였으며 7시 이후 평균농도 이하로 감소하 여 낮 시간에도 약 0.2 ppbv 정도로 유지되었다(그림 4). 7~8월 측정기간 동안 O₃의 최고 농도는 169 ppbv 까지 상승하였다. 평균 일변화 분포는 서울에서 관측 되는 전형적인 패턴을 따라 오전 6시를 기점으로 증 가하기 시작하여 오후 3시경 최고 농도에 이르렀다.

Fig. 4. Diurnal variations of HONO, O₃, NO, and NO₂ during the whole experiment period. Closed circle and bar indicate the mean value and Q₁-1.5IQR (Inter Quartile Range, = Q₃-Q₁) and Q₃ + 1.5IQR.

NO와 NO₂는 이른 오전에 상승했는데 NO₂는 서울 의 전형적인 일변화 양상과는 달리 농도가 낮 동안 높게 유지되다가 새벽에 감소하였다.

HONO와 O₃은 광화학 특성으로 인해 최고 농도와 최저 농도에 이르는 시간이 상반되므로 일반적으로 는 반비례 상관성을 보인다(그림 5). 하지만 1일 동안 의 밤 시간 HONO 최고 농도와 낮 시간 O₃ 최고 농도

	High O ₃ episode				Non-episode			
	July		August		July		August	
	Morn.	Aftern.	Morn.	Aftern.	Morn.	Aftern.	Morn.	Aftern.
HONO (ppbv)	0.48	0.32	0.38	0.26	0.32	0.26	0.28	0.20
Р_{он} (pptv sec ⁻¹)	0.11	0.08	0.06	0.04	0.06	0.05	0.06	0.04

Table 2. The average HONO mixing ratio and OH produced from HONO photolysis in the early morning (Morn., $05:00 \sim 11:00$) and afternoon (Aftern., $12:00 \sim 18:00$) during the high O₃ episodes and non-episodes.

Fig. 5. Correlation between HONO and O₃. Open circle indicates 1-hr average and closed triangle represents the daily maximum.

는 양의 상관관계를 보여(r=0.5, p-value<0.05), 밤 의 높은 HONO가 낮의 O₃ 생성에 영향을 줄 수 있음 을 의미한다.

3.2 HONO 광분해에 의한 OH 생성과 일 최고 O₃ 농도

전체 측정기간 중 1시간 평균 O₃ 농도가 100 ppbv 를 초과하는 (대기환경기준) 날을 고농도 O₃ 사례일 로 선정하여 비사례일과 비교하였다. 사례일은 7월 총 18일 측정일 중 5일(7/20, 7/21, 7/22, 7/24, 7/27), 8 월은 총 22일 측정일 중 4일(8/1, 8/2, 8/3, 8/19)이었 다. 평균 O₃ 농도는 7월(30.3 ppbv)이 8월(38.6 ppbv) 보다 낮았으나, 최고 농도는 7월(169.4 ppbv)이 8월

Table 3. The OH reactivity (R_{OH}) for the top 10 VOC species included in the F0AM model.

VOC species	R _{OH} (sec ⁻¹)
lsoprene	1.44
m,p-Xylene (m,p)	(1.30, 0.80)
Cis-2-butene	0.91
Propylene	0.84
Toluene	0.78
Ethylene	0.70
Trans-2-pentene	0.46
o-Xylene	0.39
Cis-2-pentene	0.38
Trans-2-butene	0.35

(156.9 ppbv)보다 높았다. 고농도 O₃ 사례일과 비사례 일을 비교하였을 때, HONO의 평균농도는 7월과 8월 모두 고농도 O₃ 사례일에 각각 0.41 ppbv와 0.33 ppbv 로 비사례일의 0.29 ppbv와 0.23 ppbv 보다 높았다. HONO의 일 평균농도는 주로 밤 시간 (00:00~ 05:00)에 나타나는 고농도의 영향을 크게 받으며, 실 제로 밤 시간 사례일과 비사례일의 HONO 평균농도 차이는 7월에 0.27 ppbv, 8월에 0.15 ppbv로 평균농도 의 차이보다 컸다. 또한 오전 시간(05:00~11:00)의 차 이 역시 약 0.10~0.16 ppbv로 오후 시간(12:00~ 18:00)의 차이(0.05~0.06 ppbv) 보다 컸다(표 2).

해가 뜬 후 대기 중 HONO의 시간에 따른(t, t+1) 농도 감소는 모두 광분해 반응을 통해 OH를 생성한 다는 가정하에, 고농도 O₃ 사례일과 비사례일의 HONO 광분해에 의한 OH 생성률을 계산하였다(식 3).

 $[OH]_t = J_{HONO}([HONO]_t - [HONO]_{t+1}) \quad (식 3)$

Month	Episode	Model	input	Model output		
		NO (NO ₂) (ppbv)	TVOC (ppbC)	O ₃ _HONO (ppbv)	O ₃ _HONO_s (ppbv)	
Jul	High O₃	5.1 (23.2)	118	137	120	
	Non-event	5.1 (16.8)	106	48	58	
Aug	High O₃	2.9 (20.7)	71	131	123	
	Non-event	4.1 (16.6)	70	64	74	

Table 4. The mean concentrations of NO, NO₂, and TVOC as model input, and model results of daily maximum O₃ in each period. The O₃_HONO and O₃_HONO_s indicate the O₃ calculated with HONO for its own period and the other period, respectively.

J_{HONO}는 HONO의 광분해율 (Photolysis rate)로, solar zenith angle (태양천정각)을 이용해 모수화한 (식 4)를 이용하여 계산하였다 (Wolfe *et al.*, 2016; Saunders *et al.*, 2003; Jenkin *et al.*, 1997).

 $J = l (\cos(SZA))^m exp(-n \sin(SZA)), \quad (4 4)$

여기서 *l*, *m*, *n*은 각각 0.002644, 0.261, -0.288이며, 계산된 *J*_{HONO}의 평균값은 0.1×10⁻² sec⁻¹로 다른 연 구와 비슷했다(Li *et al.*, 2012; Wong *et al.*, 2012). 오전 과 오후 각 7시간 동안 HONO의 광분해에 의한 OH 생성률 (**P**_{OH})은 7월과 8월 모두 오전이 오후보다 높 았다(표 2). 하지만 선행연구와 비교하였을 때에는 낮은 HONO 농도로 인하여 (**P**_{OH}) 또한 비슷하거나 낮았다(Alicke *et al.*, 2003).

7월 중 고농도 O₃ 사례일의 OH 생성률은 비사례 일에 비해 약 41% 컸다. 특히 오전 시간 평균 OH 생 성률은 약 44% 높았다. 반면 8월에는 7월에 비해 HONO 농도가 낮았고 사례일과 비사례일 간의 차이 가 작았는데 비사례일에 시간에 따른 감소폭이 사례 일보다 조금 더 커서 OH 생성률 역시 비사례일에 약 간 더 컸다.

HONO의 광분해가 O₃ 생성에 미치는 영향을 정량 적으로 파악하기 위해 FOAM 모델과 측정된 NO_x, VOC, 그리고 HONO 자료를 이용하여 7월과 8월의 O₃ 사례일과 비사례일에 대해(4가지 케이스) O₃ 농 도의 일변화를 모사하였다. 바람 및 혼합고 등 연직-수평 방향에 대한 대기의 물리적인 특성을 모델의 dilution factor (k_{dil}) 변수를 조절하여 반영하였다. VOCs는 측정기간 중 OH reactivity를 기준으로 상위 10종을 선정하였다(표 3). 이 10종 VOC의 OH reactivity는 전체 55종 VOC의 OH reactivity의 65%를 차 지했다. 이 중 m,p-xylene은 모두 m-xylene으로 간주 하고 모델링을 실시하였으며 이때 m,p-xylene으로 인한 O₃ 농도의 불확실도는 최대 0.4 ppbv로 모델 수 행에 있어 유의미하지 않은 수준이었다. 10종의 VOCs 중 실험 기간 내 존재하는 결측치는 해당 시간 전후 값의 평균값을 사용하였다.

F0AM 모델로 모사된 7월과 8월의 고농도 O₃ 사례 일과 비사례일의 일 최대 O₃ 농도(O₃_HONO)는 측 정값과 약 0.2~1.5 ppbv의 차이를 보였는데, 이는 측 정 기기의 오차범위(1 ppbv) 정도이므로 모델의 측정 모사 정확도가 충분하다고 판단하였다(표 4). 이를 바탕으로 7월과 8월 각각 동일한 전구물질의 농도 하 에 HONO의 농도 변화에 따른 O₃의 일 최댓값의 변 화를 HONO의 영향으로 간주하였다. 그리고 HONO 농도만 바꾸어, 즉 7월과 8월에 사례일과 비사례일의 HONO 농도를 바꾸어 O₃ 농도를 계산하였다(O₃_ HONO_s).

일 최고 O₃ 농도는 모두 사례일의 HONO를 사용 한 경우에 높았다. 즉, 사례일의 일 최고 O₃ 농도는 비 사례일의 HONO를 사용하면 감소했으며, 비사례일 의 일 최고 O₃ 농도는 사례일의 HONO를 사용하면 증가하였다 HONO 농도에 따른 일 최고 O₃ 농도 차 이는 7월에 10~17 ppbv, 8월에 8~10 ppbv였다. 7월과 8월의 고농도 O₃ 사례 시의 HONO에 의해 일 최고 O₃이 각각 17 ppbv와 8 ppbv가 상승했다. 7월의 O₃ 증

J. Korean Soc. Atmos. Environ., Vol. 36, No. 5, October 2020, pp. 579-588

가가 더 큰 것은 TVOC 농도가 7월이(118 ppbC) 8월 (71 ppbC)보다 높았기 때문이다. 특히 HONO의 광분 해로 인한 OH 생성률이 큰 오전 시간에 TVOC는 7 월과 8월에 각각 148 ppbC와 87 ppbC로 7월과 8월의 월별 차이(47 ppbC)보다 더 큰 차이(62 ppbC)를 보 였다.

사례일과 비사례일의 평균 TVOC 차이는 7월에 약 12 ppbC였으나 8월에는 1 ppbC 이하로 측정의 오차 범위 정도로 차이가 거의 없었다. 8월에는 오전(05:0 ~11:00)시간의 TVOC 농도가 사례일(87 ppbC)이 비 사례일(75 ppbC)보다 높았으나, 오후(12:00~18:00) 시간에는 사례일(61 ppbC)보다 비사례일(69 ppbC) 에 더 높았다. 8월에는 사례일과 비사례일의 평균 TVOC 농도가 유의미한 차이를 보이지 않음에도 불 구하고, HONO 농도를 변화시켰을 때 O₃ 일 최고 농 도는 7월에 비해 약 60% 정도 상승하였다. 이는 VOC 농도에 무관하게 오전 시간 HONO의 광분해로부터 비롯된 OH에 의한 VOCs 산화 기작이 일 최고 O₃ 농 도에 영향을 미치는 것을 의미한다.

4. 결 론

2018년 7월 14일부터 8월 22일까지 서울시 고려대 학교 캠퍼스에서 HONO와 O₃, NO_x, VOC (휘발성 유기화합물)을 포함한 반응성기체와 기상요소를 측 정하였다. HONO는 평행판 확산 스크러버 (PPDS-IC)를 이용하여 포집 후 IC를 이용하여 농도를 분석 하였다. 이때 HONO 표준기체를 제조하여 스크러버 의 포집 효율을 측정을 통해 산정하였는데 91.8%로 이론적 포집효율 99.9%보다 낮았다.

전체 측정기간 중 HONO 농도비의 평균은 0.28 ppbv, 최대는 0.79 ppbv로 선행연구와 비교하였을 때 비교적 낮았다. HONO는 밤에 높고 낮에 낮아 O₃과 전반적으로 반비례하는 경향을 보였으나, 일 최대 O₃ 과는 양의 상관관계를 보였다(r=0.5). 일 최대 O₃이 100 ppbv를 초과하는 날을 고농도 O₃ 사례일로 선정 하여, 기상특성이 달랐던 7월과 8월을 구분하여 각각 비교하였다. 7월은 HONO 광분해에 의한 OH 생성율 이 비사례일 (0.77 pptv sec⁻¹)보다 사례일 (1.02 pptv sec⁻¹)에 더 높았으나, 8월에는 HONO가 낮아 큰 차 이가 없었다.

OH reactivity를 기준으로 상위 10종의 VOC를 선 정하여 NO_x와 HONO 등의 측정자료와 함께 7월과 8 월 고농도 O₃ 사례일과 비사례일에 대해 F0AM 광화 학모델을 이용해 O, 일변화를 모사하였다. 이후 월별 로 사례별 평균 HONO를 모델에 입력하여 HONO의 광분해가 일 최고 O₃에 미치는 영향을 비교하였다. 7 월과 8월 사례와 비사례 기간 모두 HONO가 높을 때, O₃이 8~17 ppbv 증가하였다. 특히 TVOC가 높은 7월(118 ppbC)에 8월(71 ppbC)보다 일 최고 O3의 상 승이 더 컸다. 7월에는 사례일 평균 TVOC가 비사례 일에 비해 약 12 ppbC 높았으나, 8월은 측정 오차범 위 내의 차이를 보였다. 하지만 8월에도 일 최고 O₃ 이 높은 HONO 조건에서 8~10 ppbv 상승했다. 이는 HONO의 광분해로 생성된 OH의 기여가 큰 오전시 간의 TVOC가 사례일(87 ppbC)이 비사례일(75 ppbC)보다 높았기 때문이다. 결과적으로 HONO는 이른 오전 광분해로 OH를 생성하여 VOC 산화를 촉 진함으로써 일 최고 O₃을 상승시키므로 이 영향을 정량적으로 판단하려면 오전 시간의 VOC 농도와 분 포를 중점적으로 고려해야 한다.

감사의 글

본 연구는 한국연구재단의 "중견연구 (2020R1A2 C3014592)" 및 서울특별시의 "서울시 오존 생성 메 커니즘 정밀분석 및 효율적 저감방안 연구 (201903 0A3C700)" 과제의 지원을 받아 수행되었습니다. 서 울시 종로구에서 VOC를 측정하고 자료를 제공해 주 신 서울시 보건환경연구원에 감사드립니다.

References

Ahn, J., Park, J., Choi, J., Lim, J., Chung, Y., Lee, G. (2013) Feasibil-

ity study for simultaneous measurements of atmospheric HONO and H_2O_2 using Tunable Infrared Quantum Cascade Laser Differential Absorption Spectrometer (QC-TILDAS), Journal of Korean Society for Environmental Analysis, 16(1), 10-17, (in Korean with English abstract). http://www.ksfea. or.kr/sub2_1.asp

- Alicke, B., Platt, U., Stutz, J. (2002) Impact of nitrous acid photolysis on the total hydroxyl radical budget during the limitation of oxidant production/pianura padana produzione di ozono study in milan, Journal of Geophysical Research: Atmospheres, 107, LOP 9-1-LOP 9-17. https://doi.org/10.1029/2000 JD000075
- Alicke, B., Geyer, A., Hofzumahaus, A., Holland, F., Konrad, S., Pätz, H., Schäfer, J., Stutz, J., Volz-Thomas, A., Platt, U. (2003) OH formation by hono photolysis during the berlioz experiment, Journal of Geophysical Research: Atmospheres, 108, PHO 3-1-PHO 3-17. https://doi.org/10.1029/2001JD000579|
- Aumont, B., Chervier, F., Laval, S. (2003) Contribution of HONO sources to the NO_x/HO_x/O₃ chemistry in the polluted boundary layer, Atmospheric Environment, 37, 487-498. https://doi.org/10.1016/S1352-2310 (02)00920-2
- Benner, C.L., Eatough, N.L., Lewis, E.A., Eatough, D.J., Huang, A.A., Ellis, E.C. (1988) Diffusion coefficients for ambient nitric and nitrous acids from denuder experiments in the 1985 nitrogen species methods comparison study, Atmospheric Environment (1967), 22, 1669-1672. https://doi.org/10.1016/0004-6981(88) 90395-2
- Chang, I. (2001) Wet Effluent Diffusion Sampler Coupled Ion Chromatography System for the Determination of Atmospheric Trace Gases, Doctoral thesis, Yonsei University, (in Korean with English abstract). http:// dcollection.yonsei.ac.kr/jsp/common/DcLoOrgPer. jsp?sltemld=000000117200
- Chang, W.-I., Choi, J.-H., Hong, S.-B., Lee, J.H. (2008) Simultaneous measurements of gaseous nitrous acid and particulate nitrite using diffusion scrubber/steam chamber/luminol chemiluminescence, Bulletin of the Korean Chemical Society, 29, 1525-1532. https://doi.org/10.5012/bkcs.2008.29.8.1525
- Dasgupta, P.K. (1984) A diffusion scrubber for the collection of atmospheric gases, Atmospheric Environment (1967), 18, 1593-1599. https://doi.org/10.1016/0004-6981(84)90381-0
- De Santis, F. (1994) Comment on wet effluent denuder cou-

pled liquid/ion chromatography systems: Annular and parallel plate denuders, Analytical Chemistry, 66, 3503-3504.

- Febo, A., Perrino, C., Gherardi, M., Sparapani, R. (1995) Evaluation of a high-purity and high-stability continuous generation system for nitrous acid, Environmental Science & Technology, 29, 2390-2395. https://doi. org/10.1021/es00009a035
- Ferm, M., Sjödin, A. (1985) A sodium carbonate coated denuder for determination of nitrous acid in the atmosphere, Atmospheric Environment (1967), 19, 979-983. https://doi.org/10.1016/0004-6981(85)90243-4
- Gormley, P., Kennedy, M. (1948) Diffusion from a stream flowing through a cylindrical tube. Proceedings of the Royal Irish Academy, Section A: Mathematical and Physical Sciences: 163-169. https://www.jstor.org/ stable/20488498
- Han, J., Kim, H., Lee, M., Kim, S., Kim, S. (2013) Photochemical Air Pollution of Seoul in the Last Three Decades, Journal of Korean Society for Atmospheric Environment, 29(4), 390-406, (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2013.29.4.390
- Han, B., Kwak, K., Baik, J. (2016) Diurnal variation of O_3 and NO_2 concentrations in an urban park in summer: Effects of air temperature and wind speed, Journal of Korean Society for Atmospheric Environment, 32, 536-546, (in Korean with English abstract). https://doi. org/10.5572/KOSAE.2016.32.5.536
- Jenkin, M.E., Saunders, S.M., Pilling, M.J. (1997) The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmospheric Environment, 31, 81-104. https://doi.org/10.1016/ S1352-2310(96)00105-7
- Kim, H., Choi, W.-C., Rhee, H.-J., Suh, I., Lee, M., Blake, D.R., Kim, S., Jung, J., Lee, G., Kim, D.-S. (2018a) Meteorological and chemical factors controlling ozone formation in seoul during maps-seoul 2015, Aerosol and Air Quality Research, 18, 2274-2286. https://doi.org/10. 4209/aaqr.2017.11.0445
- Kim, S., Jeong, D., Sanchez, D., Wang, M., Seco, R., Blake, D., Meinardi, S., Barletta, B., Hughes, S., Jung, J. (2018b) The controlling factors of photochemical ozone production in seoul, South Korea, Aerosol and Air Quality Research, 18, 2253-2261. https://doi.org/10. 4209/aaqr.2017.11.0452
- Kim, J., Ghim, Y., Han, J., Park, S., Shin, H., Lee, S., Kim, J., Lee, G. (2018c) Long-term Trend Analysis of Korean Air Quality and its implication to current air quality policy on ozone and PM₁₀, Journal of Korean Society for

Atmospheric Environment, 34, 1-15, (in Korean with English abstract). https://doi.org/10.5572/KOSAE. 2018.34.1.001

- Kleffmann, J. (2007) Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer, ChemPhysChem, 8, 1137-1144. https://doi.org/10.1002/cphc.2007 00016
- Korea Meteorological Administration (KMA) (2019) 2018 meteorological yearbook, http://www.kma.go.kr/communication/webzine/yearbook.jsp
- Lee, C., Kim, Y.J., Hong, S.-B., Lee, H., Jung, J., Choi, Y.-J., Park, J., Kim, K.-H., Lee, J.-H., Chun, K.-J. (2005) Measurement of atmospheric formaldehyde and monoaromatic hydrocarbons using differential optical absorption spectroscopy during winter and summer intensive periods in Seoul, Korea, Water, Air, and Soil Pollution, 166, 181-195. https://doi.org/10.1007/s11270-005-7308-6
- Lee, Y., Kim, J., Lee, D., Baek, S. (1994) Concentration and seasonal variation of gaseous nitrous acid in Seoul air, Journal of Korean Society for Atmospheric Environment: 24-31, (in Korean with English abstract). http://www.dbpia.co.kr/journal/articleDetail?nodeld =NODE00193432
- Lee, Y.N., Zhou, X. (1993) Method for the determination of some soluble atmospheric carbonyl compounds, Environmental Science & Technology, 27, 749-756. https://doi.org/10.1021/es00041a020
- Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S., Lu, K., Rohrer, F. (2012) Exploring the atmospheric chemistry of nitrous acid (hono) at a rural site in southern china, Atmospheric Chemistry and Physics, 12, 1497-1513. https://doi. org/10.5194/acp-12-1497-2012
- Pitts, B.F., Pitts, J. (2000) Chemistry of the upper and lower atmosphere: Theory, experiments and applications. Academic press, US., 969 pp.
- Roberts, J.M., Veres, P., Warneke, C., Neuman, J., Washenfelder, R., Brown, S., Baasandorj, M., Burkholder, J., Burling, I., Johnson, T.J. (2010) Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (ni-pt-cims): Application to biomass burning emissions, Atmospheric Measurement Techniques, 3, 981. https://doi.org/10.5194/amt-3-981-2010
- Ryan, R.G., Rhodes, S., Tully, M., Wilson, S., Jones, N., Frieß, U., Schofield, R. (2018) Daytime hono, no 2 and aerosol distributions from max-doas observations in Melbourne, Atmospheric Chemistry and Physics, 18, 13969-13985. https://doi.org/10.5194/acp-18-

13969-2018

Saunders, S.M., Jenkin, M.E., Derwent, R., Pilling, M. (2003) Protocol for the development of the master chemical mechanism, mcm v3 (part a): Tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 161-180. https://doi.org/10.5194/acp-3-161-2003

- Seoul Metropolitan Government Research Institute of Public Health and Environment (SMGRIPHE) (2019) 2018 Seoul air quality assessment report. https://cleanair. seoul.go.kr/2020/board/boardView
- Song, C.H., Park, M.E., Lee, E.J., Lee, J.H., Lee, B.K., Lee, D.S., Kim, J., Han, J.S., Moon, K.J., Kondo, Y. (2009). Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea, Atmospheric Environment, 43, 2168-2173. https://doi.org/10.1016/j.atmosenv.2009. 01.018
- Takenaka, N., Terada, H., Oro, Y., Hiroi, M., Yoshikawa, H., Okitsu, K., Bandow, H. (2004) A new method for the measurement of trace amounts of HONO in the atmosphere using an air-dragged aqua-membrane-type denuder and fluorescence detection, Analyst, 129, 1130-1136. https://doi.org/10.1039/B407726A
- Tang, M., Cox, R., Kalberer, M. (2014) Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 1. Inorganic compounds, Atmospheric Chemistry & Physics, 14. https://doi.org/10.5194/acp-14-9233-2014
- Wolfe, G.M., Marvin, M.R., Roberts, S.J., Travis, K.R., Liao, J. (2016) The framework for 0-D atmospheric modeling (FOAM) v3.1, Geoscientific Model Development, 9, 3309. https://doi.org/10.5194/gmd-9-3309-2016
- Wong, K., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W., Ren, X., Luke, W., Stutz, J. (2012) Daytime HONO vertical gradients during SHARP 2009 in Houston, TX, Atmospheric Chemistry and Physics, 12, 635-652. https://doi.org/10.5194/acp-12-635-2012

Authors Information

길준수(고려대학교 이과대학 지구환경과학과 석박통합과정) 손지원(고려대학교 이과대학 지구환경과학과 석사과정) 강성구(고려대학교 그린스쿨대학원 석사과정) 박준형(고려대학교 이과대학 지구환경과학과 석사과정) 이미혜(고려대학교 이과대학 지구환경과학과 교수) 전은미(서울특별시 보건환경연구원 주무관) 심미희(서울특별시 보건환경연구원 주무관)